Answer:
D. Waste management issues
Explanation:
Answer A: The five major types of pollution - water pollution, air pollution, land pollution, light pollution, noise pollution - have negative effects on the environment, on human health, and our planet as a whole.
Answer B: Urban Heat Island (UHI) is an urban area that is significantly warmer than its surrounding rural areas due to human activities. UHI decreases air quality.
Answer C: The increased use of surrounding land is the main cause of biodiversity loss.
Answer D: Any field of environmental management help people to solve pollution problems. So, D is the correct answer.
....
Hope this answer can help you. Have a nice day!
Answer:
C₅ H₁₂ O
Explanation:
44 g of CO₂ contains 12 g of C
30.2 g of CO₂ will contain 12 x 30.2 / 44 = 8.236 g of C .
18 g of H₂O contains 2 g of hydrogen
14.8 g of H₂0 will contain 1.644 g of H .
total compound = 12.1 out of which 8.236 g is C and 1.644 g is H , rest will be O
gram of O = 2.22
moles of C, O, H in the given compound = 8.236 / 12 , 2.22 / 16 , 1.644 / 1
= .6863 , .13875 , 1.644
ratio of their moles = 4.946 : 1 : 11.84
rounding off to digits
ratio = 5 : 1 : 12
empirical formula = C₅ H₁₂ O
<u>Answer:</u> The mass of solid NaOH required is 80 g
<u>Explanation:</u>
Equivalent weight is calculated by dividing the molecular weight by n factor. The equation used is:

where,
n = acidity for bases = 1 (For NaOH)
Molar mass of NaOH = 40 g/mol
Putting values in above equation, we get:

Normality is defined as the umber of gram equivalents dissolved per liter of the solution.
Mathematically,

Or,
......(1)
We are given:
Given mass of NaOH = ?
Equivalent mass of NaOH = 40 g/eq
Volume of solution = 400 mL
Normality of solution = 5 eq/L
Putting values in equation 1, we get:

Hence, the mass of solid NaOH required is 80 g
73.606 °C is the freezing point of the solution made with with 1.31 mol of CHCl3 in 530.0 g of CCl4.
Explanation:
Data given:
number of moles of CHCl3 = 1.31 moles
mass of solvent CHCl3 = 530 grams or 0.53 kg
Kf = 29.8 degrees C/m
freezing point of pure solvent or CCl4 = -22.9 degrees
freezing point = ?
The formula used to calculate the freezing point of the mixture is
ΔT = iKf.m
m= molality
molality = 
putting the value in the equation:
molality= 
= 2.47 M
Putting the values in freezing point equation
ΔT = 1.31 x 29.8 x 2.47
ΔT = 73.606 degrees