Answer is : It is a good thermal and electrical conductor. -The main point to be noted is that aluminium is a highly reactive element and still it is used for making cooking utensils. The reason is that aluminium has a very high affinity for oxygen. So, it reacts with oxygen and forms a layer of aluminium oxide on its surface.
Answer:
Everything to the right of the arrow is a product.
Explanation:
Answer:
7.5 L of the 10% and 22.5 L of the 30% acid solution, she should mix.
Explanation:
Let the volume of 10% acid solution used to make the mixture = x L
So, the volume of 30% acid solution used to make the mixture = y L
Total volume of the mixture = <u>x + y = 30 L .................. (1)
</u>
For 10% acid solution:
C₁ = 10% , V₁ = x L
For 30% acid solution :
C₂ = 30% , V₂ = y L
For the resultant solution of sulfuric acid:
C₃ = 25% , V₃ = 30 L
Using
C₁V₁ + C₂V₂ = C₃V₃
10×x + 30×y = 25×30
So,
<u>x + 3y = 75 .................. (2)
</u>
Solving 1 and 2 we get,
<u>x = 7.5 L
</u>
<u>y = 22.5 L</u>
Answer:
See explanation.
Explanation:
Hello,
In this case, we could have two possible solutions:
A) If you are asking for the molar mass, you should use the atomic mass of each element forming the compound, that is copper, sulfur and four times oxygen, so you can compute it as shown below:

That is the mass of copper (II) sulfate contained in 1 mol of substance.
B) On the other hand, if you need to compute the moles, forming a 1.0-M solution of copper (II) sulfate, you need the volume of the solution in litres as an additional data considering the formula of molarity:

So you can solve for the moles of the solute:

Nonetheless, we do not know the volume of the solution, so the moles of copper (II) sulfate could not be determined. Anyway, for an assumed volume of 1.5 L of solution, we could obtain:

But this is just a supposition.
Regards.
<span>V equals one-third times pi times r squared times h</span>