Answer:
b) 5.87 E23 molecules
Explanation:
∴ mm SO3 = 80.066 g/mol
⇒ molecules SO3 = (78.0 g)(mol/80.066 g)(6.022 E23 molec/mol)
⇒ molec SO3 = 5.866 E23 molecules SO3
Answer:
The equilibrium shifts to produce more reactants.
Explanation:
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Consider the following chemical reaction.
Chemical reaction:
2SO₂ + O₂ ⇄ 2SO₃
In this reaction the equilibrium is disturb by increasing the concentration of Product.
When the concentration of product is increased the system will proceed in backward direction in order to regain the equilibrium. Because when product concentration is high it means reaction is not on equilibrium state. As the concentration of SO₃ increased the reaction proceed in backward direction to regain the equilibrium state and more reactant is formed.
Answer:
Answer is B.
Explanation:
Hydrogen bonds forms when hydrogen atom is attracted towards oxygen atom of other water. A proton is shared by two ion electrons pair in which oxygen atom is partially negatively charged while hydrogen atom is partially positively charged.
Answer:
When the sun, moon, and Earth are in alignment (at the time of the new or full moon), the solar tide has an additive effect on the lunar tide, creating extra-high high tides, and very low, low tides—both commonly called spring tides.
Answer:
0.225 mol = 0.23 mol to 2 significant figures
Explanation:
Calculate the moles of oxygen needed to produce 0.090 mol of water
The equation of the reaction is given as;
2 C2H2 + 5 O2 --> 4 CO2 + 2 H2O
From the equation of the reaction;
5 mol of O2 produces 2 mol of H2O
x mol of O2 produces 0.090 mol of H2O
5 = 2
x = 0.090
x = 0.090 * 5 / 2
x = 0.225 mol