<h3>
Answer:</h3>
<h3>
Explanation:</h3>
_______________
S=3 m²
F=900 N
_______________
p - ?
_______________
p=F/S=900 N / 3 m² = 300 Pa
P= w/t and W= Work
In this case, W= 6,700j, and T= 45 seconds
Power is the ratio of work per unit time. When you perform a work in a given span of time, the ratio of work performed with respect to time is Called Power.
si unit for Power is Watt (W)
so, P= 6,700/45
P= 148
Final answer is P=148
This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.
A is growth!!!!! B is reproduction!!!