1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
8

From the Water in each of the next move

Physics
1 answer:
shutvik [7]3 years ago
6 0
Any key words? That they put there
You might be interested in
Air is composed of many gases, while water is composed of a pure substance. Which best compares air and water?
natta225 [31]

Answer: c

Explanation:

C Air is a compound of two or more components that keep their own identifying properties, while water is composed of mixtures that combine to form a compound.

4 0
3 years ago
Read 2 more answers
How many licks dose it take to eat a lolipop
murzikaleks [220]

Answer: Around 364 to 480

3 0
3 years ago
Read 2 more answers
How much heat is needed to warm 0.072kg of gold from 20 celsius and 90 celsius if the specific heat of gold 136 joules
dybincka [34]

Heat supplied to the gold will raise the temperature of the gold from 20 degree Celsius to 90 degree Celsius.

Mass of the gold (m) = 0.072 kg

Temperature change (ΔT) = 90 - 20 = 70 degree Celsius

Specific heat capacity of the gold (c) = 136 J/kg C

Heat supplied = m × c × ΔT

Heat supplied = 0.072 × 136 × 70

Heat supplied = 685.44 Joules

Hence, the heat supplied to the gold to raise the temperature from 20 degree Celsius to 90 degree Celsius = 685.44 Joules

5 0
3 years ago
A bag containing 0ºC ice is much more effective in absorbing energy than one containing the same amount of 0ºC water.
rosijanka [135]

Answer:

No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.

Explanation:

Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart such that, in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Similarly, energy is needed to vaporize a liquid, because molecules in a liquid interact with each other via attractive forces. There is no temperature change until a phase change is complete. The temperature of a cup of soda initially at 0ºC stays at 0ºC until all the ice has melted. Conversely, energy is released during freezing and condensation, usually in the form of thermal energy. Work is done by cohesive forces when molecules are brought together. The corresponding energy must be given off (dissipated) to allow them to stay together Figure 2.

The energy involved in a phase change depends on two major factors: the number and strength of bonds or force pairs. The number of bonds is proportional to the number of molecules and thus to the mass of the sample. The strength of forces depends on the type of molecules. The heat Q required to change the phase of a sample of mass m is given by

Q = mLf (melting/freezing,

Q = mLv (vaporization/condensation),

where the latent heat of fusion, Lf, and latent heat of vaporization, Lv, are material constants that are determined experimentally.

6 0
3 years ago
A 115 g hockey puck sent sliding over ice is stopped in 15.1 m by the frictional force on it from the ice.
Hoochie [10]

Answer:

(a) Ff = 0.128 N

(b μk = 0.1135

Explanation:

kinematic analysis

Because the hockey puck  moves with uniformly accelerated movement we apply the following formulas:

vf=v₀+a*t Formula (1)

d= v₀t+ (1/2)*a*t² Formula (2)

Where:  

d:displacement in meters (m)  

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s

Calculation of the acceleration of the  hockey puck

We apply the Formula (1)

vf=v₀+a*t      v₀=5.8 m/s ,  vf=0

0=5.8+a*t

-5.8 = a*t

a= -5.8/t   Equation (1)

We replace a= -5.8/t in the Formula (2)

d= v₀*t+ (1/2)*a*t²   ,  d=15.1 m ,  v₀=5.8 m/s

15.1 = 5.8*t+ (1/2)*(-5.8/t)*t²  

15.1= 5.8*t-2.9*t

15.1= 2.9*t

t = 15.1 / 2.9

t= 5.2 s

We replace t= 5.2 s in the equation (1)

a= -5.8/5.2

a= -1.115 m/s²

(a) Calculation of the  frictional force (Ff)

We apply Newton's second law

∑F = m*a    Formula (3)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Look at the free body diagram of the  hockey puck in the attached graphic

∑Fx = m*a     m= 115g * 10⁻³ Kg/g = 0.115g    ,  a= -1.12 m/s²

-Ff = 0.115*(-1.115)  We multiply by (-1 ) on both sides of the equation

Ff = 0.128 N

(b) Calculation of the coefficient of friction (μk)

N: Normal Force (N)

W=m*g= 0.115*9.8= 1.127 N : hockey puck  Weight

g: acceleration due to gravity =9.8 m/s²

∑Fy = 0

N-W=0

N = W

N =  1.127 N

μk = Ff/N

μk = 0.128/1.127

μk = 0.1135

8 0
3 years ago
Other questions:
  • you mix two ionic Solutions after you mix them in a beaker the solution turns cloudy after 5 minutes the solution becomes clear
    8·1 answer
  • PLZ ANSWER!!! QUICKLY
    8·2 answers
  • Two infinite planes of charge lie parallel to each other and to the yz plane. One is at x--1 m and has a surface charge density
    11·1 answer
  • PLS HELP YOU BEAUTFUL PPL
    8·1 answer
  • Newton's second law of motion says that the mass of an object times its acceleration is equal to the net force on the object. Wh
    11·1 answer
  • When the bells are charged up, the left bell acquires a positive charge, the right bell a negative charge. When this occurs, the
    15·1 answer
  • Two masses m1 and m2 are traveling in the direction of each other. The speed of m1 is v1 and oriented along the positive x-direc
    10·1 answer
  • Two uniform solid spheres of the same size, but different mass, are released from rest simultaneously at the same height on a hi
    14·1 answer
  • Find the mass of a child who runs at a speed of 4 m/s to get a pizza with extra cheese. His momentum is 120 kg•m/s.
    12·1 answer
  • Explain how horizontal motion can be uniform while vertical motion is accelerated.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!