The solution you should use is Hooke's law: F=-kx
It should have the same signs because they repel due to the stretch of the spring.
a. Since there is a constant energy within the spring, then Hooke's law will determine the possible algebraic signs. The solution should be
<span>F = kx
270 N/m x 0.38 m = 102.6 N
</span>
b. Then use Coulomb's law; F=kq1q2/r^2 to find the charges produced in the force.
The answer is allotropes. Hope this helps. Have a great day.
Answer: 90 km/hr
Explanation:
Speed= distance divided by time
540/6
= 90km/hr
Answer:
a) 17.8 m/s
b) 28.3 m
Explanation:
Given:
angle A = 53.0°
sinA = 0.8
cosA = 0.6
width of the river,d = 40.0 m,
the far bank was 15.0 m lower than the top of the ramp h = 15.0 m,
The river itself was 100 m below the ramp H = 100 m,
(a) find speed v
vertical displacement

putting values h=15 m, v=0.8
............. (1)
horizontal displacement d = vcosA×t = 0.6×v ×t
so v×t = d/0.6 = 40/0.6
plug it into (1) and get

solving for t we get
t = 3.734 s
also, v = (40/0.6)/t = 40/(0.6×3.734) = 17.8 m/s
(b) If his speed was only half the value found in (a), where did he land?
v = 17.8/2 = 8.9 m/s
vertical displacement = 
⇒ 
t = 5.30 s
then
d =v×cosA×t = 8.9×0.6×5.30= 28.3 m
Solution: (i) Density (ii) thermal
Liquids at lower temperatures have greater density when compared to liquids at higher temperatures.This is because, at higher temperatures, molecules have greater kinetic energy and hence they are spaced farther apart, when compared to molecules at lower temperatures. Thus, the colder layers of liquids are heavier than the warmer layers, which causes then to move down due to gravity. For the same reason, the hotter layers move upwards through the liquid.
When a liquid is heated, the molecules closest to the heat source have greater energy, their density becomes less and they move upwards. The colder layers sink downwards. The layers of the liquid which were cold initially, get heated and they travel upwards. As the process repeats, convection currents are set up in the liquid.
These currents transfer the thermal energy derived from the source throughout the liquid. The process stops when the entire liquid is at the same temperature.
Thus, convection currents occur in liquids due to temperature and <u>density</u> differences. Convection currents transfer <u>thermal</u> energy throughout a fluid.