So, the force of gravity that the asteroid and the planet have on each other approximately 
<h3>Introduction</h3>
Hi ! Now, I will help to discuss about the gravitational force between two objects. The force of gravity is not affected by the radius of an object, but radius between two object. Moreover, if the object is a planet, the radius of the planet is only to calculate the "gravitational acceleration" on the planet itself,does not determine the gravitational force between the two planets. For the gravitational force between two objects, it can be calculated using the following formula :

With the following condition :
- F = gravitational force (N)
- G = gravity constant ≈
N.m²/kg²
= mass of the first object (kg)
= mass of the second object (kg)- r = distance between two objects (m)
<h3>Problem Solving</h3>
We know that :
- G = gravity constant ≈
N.m²/kg²
= mass of the planet X =
kg.
= mass of the planet Y =
kg.- r = distance between two objects =
m.
What was asked :
- F = gravitational force = ... N
Step by step :





<h3>Conclusion</h3>
So, the force of gravity that the asteroid and the planet have on each other approximately

<h3>See More</h3>
Answer:
<em>The equivalent resistance of the combination is R/100</em>
Explanation:
<u>Electric Resistance</u>
The electric resistance of a wire is directly proportional to its length. If a wire of resistance R is cut into 10 equal parts, then each part has a resistance of R/10.
Parallel connection of resistances: If R1, R2, R3,...., Rn are connected in parallel, the equivalent resistance is calculated as follows:

If we have 10 wires of resistance R/10 each and connect them in parallel, the equivalent resistance is:

This sum is repeated 10 times. Operating each term:

All the terms have the same denominator, thus:

Taking the reciprocals:

The equivalent resistance of the combination is R/100
Answer:
Centre of mass is the point at which the distribution of mass is equal in all directions, and does not depend on gravitational field. Centre of gravity is the point at which the distribution of weight is equal in all directions, and does depend on gravitational field.
Explanation:
google
Answer:
A 2.0 kg ball, A, is moving with a velocity of 5.00 m/s due west. It collides with a stationary ball, B, also with a mass of 2.0 kg. After the collision
Explanation: