Answer:
0.04 M
Explanation:
Given data:
Mass of Na₂SO₄= 14.2 g
Volume of solution = 2.50 L
Molarity of solution = ?
Solution:
Number of moles of Na₂SO₄:
Number of moles = mass/ molar mass
Number of moles = 14.2 g/ 142.04 g/mol
Number of moles = 0.1 mol
Molarity :
Molarity = number of moles of solute / volume of solution in L
Molarity = 0.1 mol / 2.50 L
Molarity = 0.04 M
Split and merge into it. While they are alive, carbon returns from animals into water through waste products from respiration and defecation/urination. Another way when they are dead is from decaying remains. While they are alive, carbon returns from animals into water through waste products from respiration and defecation/urination.
Good enough?
Molar mass Na = 23g/mol
46g = 456/2 = 2mol
1mol = 6.022*10^23 atoms
2mol = 2*6.022*10623
= 1.204*10^24 atoms
If you would draw the Lewis structures of these atoms, you would see that A has 2 electron pairs and 2 lone electrons (that can bond). For B you’d see that you only have 1 electron that can form a bond. This means that 1 atom of A (2 lone electrons) can bond with 2 atoms of B. To know the kind of bond you have to know wether or not there will be a ‘donation’ of an electron from one atom to another. This happens when the number of electrons on one atoms is equal to the number of electrons another atom needs to reach the noble gas structure. As you can see, this is not the case here. This means that you get an AB2 structure with covalent character.
The answer is (3). The reaction that can occur at the anode is oxidation reaction which will lose electrons. So (1) and (2) are not correct. For (4) Fe3+ can not lose electrons again.