In a covalent bond one atom can attract the shared electrons more strongly than the other atom can. Water or H2O has a covalent bond whose Oxygen atoms attract more electrons that its Hydrogen atom. Since electrons have a negative charge, the Oxygen atom has a partial negative charge and the Hydrogen atom has a partial positive charge. These partial charges are what make water a polar molecule.marrit <span>· 2 years ago</span>
Answer:
it is a sacrafice to god so the spirtit can go free
Explanation:
Blank 1: nothing (to keep 2 total nitrogen)
blank 2: 3 (to make 6 total hydrogen)
blank 3: 2 (to make 2 total nitrogen and 6 total hydrogen)
hope this helps!! :)
Answer:
A chemical equation is balanced when the number of each kind of atom is the same on both sides of the reaction.
Explanation:
The law of conservation of matter (except in nuclear reactions) indicates that atoms can neither be created or destroyed.
The number of atoms that are in the reactants must be the same as the number of the atoms that are in the product.
The number and types of molecules can (and will) change. The atoms that make up the molecules are rearranged but the number and kinds of atoms stay the same.
Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas