Answer:
Mass = 8.46 g
Explanation:
Given data:
Mass of water produced = ?
Mass of glucose = 20 g
Mass of oxygen = 15 g
Solution:
Chemical equation:
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 20 g/ 180.16 g/mol
Number of moles = 0.11 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 15 g/ 32 g/mol
Number of moles = 0.47 mol
now we will compare the moles of water with oxygen and glucose.
C₆H₁₂O₆ : H₂O
1 : 6
0.11 : 6/1×0.11 = 0.66
O₂ : H₂O
6 : 6
0.47 : 0.47
Less number of moles of water are produced by oxygen thus it will limit the yield of water and act as limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 0.47 mol ×18 g/mol
Mass = 8.46 g
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
Answer:
You should follow these steps:
Count each type of atom in reactants and products.
Place coefficients, as needed, in front of the symbols or formulas to increase the number of atoms or molecules of the substances.
Repeat steps 1 and 2 until the equation is balanced.
Explanation:
A. Fireworks exploding is the answer
Answer:
1.7 × 10 ^42
Explanation:
Using Nernst equation
E°cell = RT/nF Inq
at equilibrium
Q=K
E°cell = 0.0257 /n Ink= 0.0592/n log K
Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V
Ag+aq)+e−→Ag(s) E∘= 0.80 V
Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s)
balance the reaction
Fe → Fe²⁺ + 2e⁻ reversing for oxidation E° = 0.45 v
2 Ag⁺ +2e⁻ → 2Ag
n = 2 moles and K = equilibrium constant
E° cell = 0.80 + 0.45 = 1.25 V
E° cell = (0.0592 / n) log K
substitute the value into the equations and solve for K
(1.25 × 2) / 0.0592 = log K
42.23 = log K
k = 10^ 42.23
K = 1.7 × 10 ^42