1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
7

The front face of Jamal's roof is shaped

Mathematics
1 answer:
s2008m [1.1K]3 years ago
7 0

Answer:

Its a i just took the test

Step-by-step explanation:

You might be interested in
Need urgent help on Algebra problem!!!!! I need your help!!!!
svetlana [45]
 I believe the answer is 2.
6 0
3 years ago
1) Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given
neonofarm [45]

Answer:

Check below, please

Step-by-step explanation:

Hello!

1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this

x_{1}=2\\x_{2}=2-\frac{f(2)}{f'(2)}=2.5\\x_{3}=2.5-\frac{f(2.5)}{f'(2.5)}\approx 2.4166\\x_{4}=2.4166-\frac{f(2.4166)}{f'(2.4166)}\approx 2.41421\\x_{5}=2.41421-\frac{f(2.41421)}{f'(2.41421)}\approx \mathbf{2.41421}

2)  Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.

We can rewrite it as: x^2-2x-4=0

x_{1}=-1.1\\x_{2}=-1.1-\frac{f(-1.1)}{f'(-1.1)}=-1.24047\\x_{3}=-1.24047-\frac{f(1.24047)}{f'(1.24047)}\approx -1.23607\\x_{4}=-1.23607-\frac{f(-1.23607)}{f'(-1.23607)}\approx -1.23606\\x_{5}=-1.23606-\frac{f(-1.23606)}{f'(-1.23606)}\approx \mathbf{-1.23606}

As for

x_{1}=3.2\\x_{2}=3.2-\frac{f(3.2)}{f'(3.2)}=3.23636\\x_{3}=3.23636-\frac{f(3.23636)}{f'(3.23636)}\approx 3.23606\\x_{4}=3.23606-\frac{f(3.23606)}{f'(3.23606)}\approx \mathbf{3.23606}\\

3) Rewriting and calculating its derivative. Remember to do it, in radians.

5\cos(x)-x-1=0 \:and f'(x)=-5\sin(x)-1

x_{1}=1\\x_{2}=1-\frac{f(1)}{f'(1)}=1.13471\\x_{3}=1.13471-\frac{f(1.13471)}{f'(1.13471)}\approx 1.13060\\x_{4}=1.13060-\frac{f(1.13060)}{f'(1.13060)}\approx 1.13059\\x_{5}= 1.13059-\frac{f( 1.13059)}{f'( 1.13059)}\approx \mathbf{ 1.13059}

For the second root, let's try -1.5

x_{1}=-1.5\\x_{2}=-1.5-\frac{f(-1.5)}{f'(-1.5)}=-1.71409\\x_{3}=-1.71409-\frac{f(-1.71409)}{f'(-1.71409)}\approx -1.71410\\x_{4}=-1.71410-\frac{f(-1.71410)}{f'(-1.71410)}\approx \mathbf{-1.71410}\\

For x=-3.9, last root.

x_{1}=-3.9\\x_{2}=-3.9-\frac{f(-3.9)}{f'(-3.9)}=-4.06438\\x_{3}=-4.06438-\frac{f(-4.06438)}{f'(-4.06438)}\approx -4.05507\\x_{4}=-4.05507-\frac{f(-4.05507)}{f'(-4.05507)}\approx \mathbf{-4.05507}\\

5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.

x_{n+1}=x_{n}-\frac{f'(n)}{f''(n)}

f(x)=x^6-x^4+3x^3-2x

\mathbf{f'(x)=6x^5-4x^3+9x^2-2}

\mathbf{f''(x)=30x^4-12x^2+18x}

For -1.2

x_{1}=-1.2\\x_{2}=-1.2-\frac{f'(-1.2)}{f''(-1.2)}=-1.32611\\x_{3}=-1.32611-\frac{f'(-1.32611)}{f''(-1.32611)}\approx -1.29575\\x_{4}=-1.29575-\frac{f'(-1.29575)}{f''(-4.05507)}\approx -1.29325\\x_{5}= -1.29325-\frac{f'( -1.29325)}{f''( -1.29325)}\approx  -1.29322\\x_{6}= -1.29322-\frac{f'( -1.29322)}{f''( -1.29322)}\approx  \mathbf{-1.29322}\\

For x=0.4

x_{1}=0.4\\x_{2}=0.4\frac{f'(0.4)}{f''(0.4)}=0.52476\\x_{3}=0.52476-\frac{f'(0.52476)}{f''(0.52476)}\approx 0.50823\\x_{4}=0.50823-\frac{f'(0.50823)}{f''(0.50823)}\approx 0.50785\\x_{5}= 0.50785-\frac{f'(0.50785)}{f''(0.50785)}\approx  \mathbf{0.50785}\\

and for x=-0.4

x_{1}=-0.4\\x_{2}=-0.4\frac{f'(-0.4)}{f''(-0.4)}=-0.44375\\x_{3}=-0.44375-\frac{f'(-0.44375)}{f''(-0.44375)}\approx -0.44173\\x_{4}=-0.44173-\frac{f'(-0.44173)}{f''(-0.44173)}\approx \mathbf{-0.44173}\\

These roots (in bold) are the critical numbers

3 0
2 years ago
Can someone help me on this
nydimaria [60]

Answer:

10√3 feet

Step-by-step explanation:

In a 30-60-90 triangle;

-Long leg = long leg

-Short leg = 1/2 * long leg

-2nd longest leg = short leg * √3

-Long leg = 20

-Short leg = 1/2 * long leg = 10

-2nd longest leg = short leg * √3 = 10√3

8 0
3 years ago
Read 2 more answers
Find the equation of the axis of symmetry of the parabola.
Stolb23 [73]

Answer:

Just substitute 0 instead of f (x),therefore

x { }^{2}  - 12x + 36 \\ x = 6

The answer option is C

7 0
3 years ago
Hay tres paralelos para el curso de cálculo diferencial y tres paralelos para algebra lineal. Un estudiante desea tomar ambos cu
Lelu [443]

Answer:

mi español no es tan bueno si hay algún error en esto entonces lo siento

cursos en diferencial = a, b, c

cursos de álgebra = p, q, r

conjunto de estudiantes tomando ambos = {(a, p), (a, q), (a, r), (b, p), (b, q), (b, r), (c,p),(c,q),(c,r)}.

Step-by-step explanation:

márcame como el más inteligente

7 0
3 years ago
Other questions:
  • if you have 8 cups of flour and the recipe call for 2/3 cups and another recipe calls for 3 1/4 cups how much flour do you have
    8·1 answer
  • Use the angle sum identity to find the exact value of cos 105
    11·1 answer
  • What is the correct answer in this question? I actually don't get it.
    8·2 answers
  • Conditional statements are always written in if-then form.
    8·2 answers
  • Alejandra desea realizar sus ejercicios cardiovasculares, para ello corre alrededor de una piscina de forma circular, ¿Cuánto re
    7·1 answer
  • The probability of getting hired at company A is 0.84, while the probability of getting hired at company B is 0.71. If
    6·1 answer
  • If angle 1 and angle 5 are vertical angles and angle 1 equals 55°, then angle 5 will equal _____.
    9·1 answer
  • You want to wrap a gift shaped like the regular triangular prism shown. How many square inches of wrapping paper do you need to
    7·1 answer
  • 100 POINTS IF U GET THIS RIGHT!
    9·1 answer
  • Reflect the shape A in the line x=1
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!