The area of square: s · s = s²
The area of rectangle: (s + 6) · s = s(s + 6)
So:
s² + s(s + 6) = 56
s² + s(s + 6) - 56 = 0
Answer D.
A ) cos² x · 1 / sin x - 1 / sin x = - sin x
cos² x - 1 / sin x = - sin x
- sin² x / sin x = - sin x
- sin x = - sin x ( correct )
B ) sin x ( cos x / sin x + sin x / cos x ) = 1 / cos x
sin x · ( cos² x + sin²x ) / sin x cos x = 1 / cos x
sin x · 1 / sin x cos x = 1 / cos x
1 / cos x = 1 / cos x ( correct )
C ) cos² x - sin² x = 1 - 2 sin² x
1 - sin² x - sin² x = 1 - 2 sin² x
1 - 2 sin² x = 1 - 2 sin² x ( correct )
D ) 1/sin²x + 1/ cos²x = 1
cos²x + sin² x / sin² x cos² x = 1
1 / cos² x sin² x = 1
cos²x sin² x ≠ 1
Answer: D ) is not an identity.
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
Answer:
x^3 - 2x + 4
Step-by-step explanation:
4x^2 - 2x + 6x - 10 + desiredsidelength = x^3 + 4x^2 + 2x - 6.
desiredsidelength = x^3 - 2x + 4
64
80 80
thats how you havw to put it