Answer:
The mass of NaCl is 0.029 grams
Explanation:
Step 1: Data given
Molecular weight of NaCl = 58.44 g/mol
Volume of solution = 100 mL = 0.100 L
Molarity = 0.0050 M
Step 2: Calculate moles NaCl
Moles NaCl = molarity * volume
Moles NaCl = 0.0050 M * 0.100 L
Moles NaCl = 0.00050 moles
Step 3: Calculate mass NaCl
Mass NaCl = moles NaCl * molar mass NaCl
Mass NaCl = 0.00050 moles * 58.44 g/mol
Mass NaCl = 0.029 grams
The mass of NaCl is 0.029 grams
The answer is (2). If you recall Rutherford's gold foil experiment, remember that a stream of positively charged alpha particles were shot at a gold foil in the center of a detector ring. The important observation was that although most of the particles passed straight through the foil without being deflected, a tiny fraction of the alpha particles were deflected off the axis of the shot, and some were even deflected almost back to the point from which they were shot. The fact that some of the alpha particles were deflected indicated a positive charge (because same charges repel), and the fact that only a small fraction of the particles were deflected indicated that the positive charge was concentrated in a small area, probably residing at the center of the atom.
The statement that is true is that B. Atoms always remain intact during chemical reactions.
Atoms simply mean the <u>basic units of matter.</u> They're the defining structure of an element. Atom is also known as the smallest unit of matter.
It should be noted that atoms always remain intact during chemical reactions. They cannot be added and removed when there are <em>chemical reactions.</em>
Read related link on:
brainly.com/question/19338615
Answer : Option B) Plant stomata opening and closing to maintain homeostasis.
Explanation : Claude Bernand was a French Physiologist who first discovered about "homeostasis" which is defined as the controlled stability of the internal milieu, or internal environment, of cells and tissues in plants.
In plants stomatal opening and closing was done for maintaining homeostasis with the external and internal plant environment.
Answer:
Giant structures
Explanation:
An ionic compound is a giant structure of ions. The ions have a regular, repeating arrangement called an ionic lattice . The lattice is formed because the ions attract each other and form a regular pattern with oppositely charged ions next to each other.