1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
4 years ago
12

In an experiment to study the photoelectric effect, a scientist measures the kinetic energy of ejected electrons as afunction of

the frequency of radiation hitting a metal surface. She obtains the following plot The point labeled " v0 "corresponds to light with a wavelength of 680 nrn (a)What is the value of in 5-1? (b)What is the value of the work functionof the metal in units of of ki/mol ejected electrons? (c) What happens when the metal is irradiated with light of frequencyless than Vo? (d) Note that when the frequency of the light is greater than Vo, the plot shows a straight line with a nonzeroslope. Why is this the case? (e) Can you determine the slope of the line segment discussed in part (d)? Explain.

Chemistry
1 answer:
crimeas [40]4 years ago
5 0

Answer:

a) v₀ = 4.41 × 10¹⁴ s⁻¹

b) W₀ = 176 KJ/mol of ejected electrons

c) From the graph, light of frequency less than v₀ will not cause electrons to break free from the surface of the metal. Electron kinetic energy remains at zero as long as the frequency of incident light is less than v₀.

d) When frequency of the light exceeds v₀, there is an increase of electron kinetic energy from zero steadily upwards with a constant slope. This is because, once light frequency exceeds, v₀, its energy too exceeds the work function of the metal and the electrons instantaneously gain the energy of incident light and convert this energy to kinetic energy by breaking free and going into motion. The energy keeps increasing as the energy and frequency of incident light increases and electrons gain more speed.

e) The slope of the line segment gives the Planck's constant. Explanation is in the section below.

Explanation:

The plot for this question which is attached to this solution has Electron kinetic energy on the y-axis and frequency of incident light on the x-axis.

a) Wavelength, λ = 680 nm = 680 × 10⁻⁹ m

Speed of light = 3 × 10⁸ m/s

The frequency of the light, v₀ = ?

Frequency = speed of light/wavelength

v₀ = (3 × 10⁸)/(680 × 10⁻⁹) = 4.41 × 10¹⁴ s⁻¹

b) Work function, W₀ = energy of the light photons with the wavelength of v₀ = E = hv₀

h = Planck's constant = 6.63 × 10⁻³⁴ J.s

E = 6.63 × 10⁻³⁴ × 4.41 × 10¹⁴ = 2.92 × 10⁻¹⁹J

E in J/mol of ejected electrons

Ecalculated × Avogadros constant

= 2.92 × 10⁻¹⁹ × 6.023 × 10²³

= 1.76 × 10⁵ J/mol of ejected electrons = 176 KJ/mol of ejected electrons

c) Light of frequency less than v₀ does not possess enough energy to cause electrons to break free from the metal surface. The energy of light with frequency less than v₀ is less than the work function of the metal (which is the minimum amount of energy of light required to excite electrons on metal surface enough to break free).

As evident from the graph, electron kinetic energy remains at zero as long as the frequency of incident light is less than v₀.

d) When frequency of the light exceeds v₀, there is an increase of electron kinetic energy from zero steadily upwards with a constant slope. This is because, once light frequency exceeds, v₀, its energy too exceeds the work function of the metal and the electrons instantaneously gain the energy of incident light and convert this energy to kinetic energy by breaking free and going into motion. The energy keeps increasing as the energy and frequency of incident light increases and electrons gain more speed.

e) The slope of the line segment gives the Planck's constant. From the mathematical relationship, E = hv₀,

And the slope of the line segment is Energy of ejected electrons/frequency of incident light, E/v₀, which adequately matches the Planck's constant, h = 6.63 × 10⁻³⁴ J.s

Hope this Helps!!!

You might be interested in
Describe melting of a solid
kvv77 [185]
Answer- The particles in a solid gain enough energy to overcome the bonding forces holding them firmly in place. Typically, during melting, the particles start to move about, staying close to their neighbouring particles, then move more freely.
3 0
3 years ago
A 99.8 mL sample of a solution that is 12.0% KI by mass (d: 1.093 g/mL) is added to 96.7 mL of another solution that is 14.0% Pb
andre [41]

Answer:

m_{PbI_2}=18.2gPbI_2

Explanation:

Hello,

In this case, we write the reaction again:

Pb(NO_3)_2(aq) + 2 KI(aq)\rightarrow PbI_2(s) + 2 KNO_3(aq)

In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:

n_{Pb(NO_3)_2}=\frac{0.14gPb(NO_3)_2}{1g\ sln}*\frac{1molPb(NO_3)_2}{331.2gPb(NO_3)_2}  *\frac{1.134g\ sln}{1mL\ sln} *96.7mL\ sln\\\\n_{Pb(NO_3)_2}=0.04635molPb(NO_3)_2\\\\n_{KI}=\frac{0.12gKI}{1g\ sln}*\frac{1molKI}{166.0gKI}  *\frac{1.093g\ sln}{1mL\ sln} *99.8mL\ sln\\\\n_{KI}=0.07885molKI

Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:

0.04635molPb(NO_3)_2*\frac{2molKI}{1molPb(NO_3)_2} =0.0927molKI

But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:

m_{PbI_2}=0.07885molKI*\frac{1molPbI_2}{2molKI} *\frac{461.01gPbI_2}{1molPbI_2} \\\\m_{PbI_2}=18.2gPbI_2

Best regards.

5 0
3 years ago
Read 2 more answers
You carefully weigh out 16.00 g of CaCO3 powder and add it to 64.80 g of HCl solution. You notice bubbles as a reaction takes pl
bulgar [2K]

Answer: Mass of CO_2  produced in this reaction was 6.56 grams

Explanation:

According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

CaCO_3(s)+2HCl(aq)\rightarrow H_2O(l)+CO_2(g)+CaCl_2(aq)

Mass or reactants =  Mass of CaCO_3+ mass of HCl = 16.00 + 64.80 = 80.80 g

Mass of products  = mass of aqueous solution + mass of CO_2 + = 74.24 + x g

Mass or reactants = Mass of products

80.80 g = 74.24 + x g

x = 6.56 g

Thus mass of CO_2  produced in this reaction was 6.56 grams

7 0
4 years ago
Zinc oxide adopts a face-centered cubic arrangement. Both Zinc ions and oxide ions adopt the face-centered cubic arrangement; wi
vichka [17]

Answer:

5.41 ×10⁻²²

Explanation:

We were told right from the question that both the Zinc ions and the Zinc oxide adopts a face-centered cubic arrangement.

Then, the number of ZnO molecule in one unit cell = 4

The standard molar mass of ZnO = 81.38g

Avogadro's constant = 6.023 × 10²³ mole

∴

The mass of one unit cell of zinc oxide can be calculated as:

= \frac{4*81.38}{6.023*10^{23}}

= 5.40461564×10⁻²²

≅ 5.41 ×10⁻²²

∴ The mass of one unit cell of zinc oxide = 5.41 ×10⁻²²

3 0
3 years ago
What are sme important facts/info I need to know about Aluminum? Like, is it malleable? I need to know abot this for a science p
grigory [225]
Aluminum is light and is quite unreactive it is malleable and strong too.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Write the complete balanced equation for the following reaction:
    11·1 answer
  • What is the final acetate ion concentration when 69. g Ba(C2H3O2)2 is dissolved in enough water to make 970. mL of solution? The
    5·1 answer
  • A little boy is playing with a plastic water bottle. He blows air into the bottle to make a whistling sound. Then, he wedges a p
    15·1 answer
  • The wavelength of some yellow light is 580.0 nm. What is the frequency of this yellow light?
    15·2 answers
  • How many molecules and atoms of oxygen are present in 5.6 liters of oxygen (O2) at STP?
    15·2 answers
  • A graduated cylinder is filled with 50.7 mL of water. If a 10.0 g piece of zinc metal is added to the water, and the volume rise
    12·1 answer
  • What's the molar mass of Calcium Chloride?
    12·1 answer
  • A galvanic cell is based on the following half-reactions at 279 K: Ag+ + e- → Ag Eo = 0.803 V H2O2 (aq) + 2 H+ + 2 e- → 2 H2O Eo
    14·1 answer
  • Electron configuration for be+2
    5·1 answer
  • A dachshund walked 20 meters in 30 minutes. Calculate the speed. Provide your
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!