Common Pythagorean triples include
(3, 4, 5)
(5, 12, 13)
(7, 24, 25)
(9, 40, 41)
The only Pythagorean triple that is an arithmetic sequence is (3, 4, 5), so any arithmetic sequence that is a Pythagorean triple must be a multiple of that, such as (9, 12, 15) or (15, 20, 25).
The arithmetic sequences of selections B and D are unrelated to the (3, 4, 5) triple, so cannot be Pythagorean triples. For selection A, we know that 9² + 11² = 81 + 121 = 202 > 14², so that is not a right triangle.
The appropriate selection is ...
C. 7, 24, 25
Answer: It's a 180 degree angle.
Step-by-step explanation:
I used a dash line because the term 'less than' does not include the value itself.
1. Using the exponent rule (a^b)·(a^c) = a^(b+c) ...

Simplify. Write in Scientific Notation
2. You know that 256 = 2.56·100 = 2.56·10². After that, we use the same rule for exponents as above.

3. The distributive property is useful for this.
(3x – 1)(5x + 4) = (3x)(5x + 4) – 1(5x + 4)
... = 15x² +12x – 5x –4
... = 15x² +7x -4
4. Look for factors of 8·(-3) = -24 that add to give 2, the x-coefficient.
-24 = -1×24 = -2×12 = -3×8 = -4×6
The last pair of factors adds to give 2. Now we can write
... (8x -4)(8x +6)/8 . . . . . where each of the instances of 8 is an instance of the coefficient of x² in the original expression. Factoring 4 from the first factor and 2 from the second factor gives
... (2x -1)(4x +3) . . . . . the factorization you require
Degree measures<span>Remember -- the sum of the degree measures of angles in any triangle equals 180 degrees. Below is a picture of triangle ABC, where angle A = 60 degrees, angle B = 50 degrees and angle C = 70 degrees.</span>