Answer:

Step-by-step explanation:
Let's sketch graphs of functions f(x) and g(x) on one coordinate system (attachment).
Let's calculate the common points:
![x^2=\sqrt{x}\qquad\text{square of both sides}\\\\(x^2)^2=\left(\sqrt{x}\right)^2\\\\x^4=x\qquad\text{subtract}\ x\ \text{from both sides}\\\\x^4-x=0\qquad\text{distribute}\\\\x(x^3-1)=0\iff x=0\ \vee\ x^3-1=0\\\\x^3-1=0\qquad\text{add 1 to both sides}\\\\x^3=1\to x=\sqrt[3]1\to x=1](https://tex.z-dn.net/?f=x%5E2%3D%5Csqrt%7Bx%7D%5Cqquad%5Ctext%7Bsquare%20of%20both%20sides%7D%5C%5C%5C%5C%28x%5E2%29%5E2%3D%5Cleft%28%5Csqrt%7Bx%7D%5Cright%29%5E2%5C%5C%5C%5Cx%5E4%3Dx%5Cqquad%5Ctext%7Bsubtract%7D%5C%20x%5C%20%5Ctext%7Bfrom%20both%20sides%7D%5C%5C%5C%5Cx%5E4-x%3D0%5Cqquad%5Ctext%7Bdistribute%7D%5C%5C%5C%5Cx%28x%5E3-1%29%3D0%5Ciff%20x%3D0%5C%20%5Cvee%5C%20x%5E3-1%3D0%5C%5C%5C%5Cx%5E3-1%3D0%5Cqquad%5Ctext%7Badd%201%20to%20both%20sides%7D%5C%5C%5C%5Cx%5E3%3D1%5Cto%20x%3D%5Csqrt%5B3%5D1%5Cto%20x%3D1)
The area to be calculated is the area in the interval [0, 1] bounded by the graph g(x) and the axis x minus the area bounded by the graph f(x) and the axis x.
We have integrals:
![\int\limits_{0}^1(\sqrt{x})dx-\int\limits_{0}^1(x^2)dx=(*)\\\\\int(\sqrt{x})dx=\int\left(x^\frac{1}{2}\right)dx=\dfrac{2}{3}x^\frac{3}{2}=\dfrac{2x\sqrt{x}}{3}\\\\\int(x^2)dx=\dfrac{1}{3}x^3\\\\(*)=\left(\dfrac{2x\sqrt{x}}{2}\right]^1_0-\left(\dfrac{1}{3}x^3\right]^1_0=\dfrac{2(1)\sqrt{1}}{2}-\dfrac{2(0)\sqrt{0}}{2}-\left(\dfrac{1}{3}(1)^3-\dfrac{1}{3}(0)^3\right)\\\\=\dfrac{2(1)(1)}{2}-\dfrac{2(0)(0)}{2}-\dfrac{1}{3}(1)}+\dfrac{1}{3}(0)=2-0-\dfrac{1}{3}+0=1\dfrac{1}{3}](https://tex.z-dn.net/?f=%5Cint%5Climits_%7B0%7D%5E1%28%5Csqrt%7Bx%7D%29dx-%5Cint%5Climits_%7B0%7D%5E1%28x%5E2%29dx%3D%28%2A%29%5C%5C%5C%5C%5Cint%28%5Csqrt%7Bx%7D%29dx%3D%5Cint%5Cleft%28x%5E%5Cfrac%7B1%7D%7B2%7D%5Cright%29dx%3D%5Cdfrac%7B2%7D%7B3%7Dx%5E%5Cfrac%7B3%7D%7B2%7D%3D%5Cdfrac%7B2x%5Csqrt%7Bx%7D%7D%7B3%7D%5C%5C%5C%5C%5Cint%28x%5E2%29dx%3D%5Cdfrac%7B1%7D%7B3%7Dx%5E3%5C%5C%5C%5C%28%2A%29%3D%5Cleft%28%5Cdfrac%7B2x%5Csqrt%7Bx%7D%7D%7B2%7D%5Cright%5D%5E1_0-%5Cleft%28%5Cdfrac%7B1%7D%7B3%7Dx%5E3%5Cright%5D%5E1_0%3D%5Cdfrac%7B2%281%29%5Csqrt%7B1%7D%7D%7B2%7D-%5Cdfrac%7B2%280%29%5Csqrt%7B0%7D%7D%7B2%7D-%5Cleft%28%5Cdfrac%7B1%7D%7B3%7D%281%29%5E3-%5Cdfrac%7B1%7D%7B3%7D%280%29%5E3%5Cright%29%5C%5C%5C%5C%3D%5Cdfrac%7B2%281%29%281%29%7D%7B2%7D-%5Cdfrac%7B2%280%29%280%29%7D%7B2%7D-%5Cdfrac%7B1%7D%7B3%7D%281%29%7D%2B%5Cdfrac%7B1%7D%7B3%7D%280%29%3D2-0-%5Cdfrac%7B1%7D%7B3%7D%2B0%3D1%5Cdfrac%7B1%7D%7B3%7D)
Answer:
If
is divisible by 3, the n is also divisible by 3.
Step-by-step explanation:
We will prove this with the help of contrapositive that is we prove that if n is not divisible by 3, then,
is not divisible by 3.
Let n not be divisible by 3. Then
can be written in the form of fraction
, where x and y are co-prime to each other or in other words the fraction is in lowest form.
Now, squaring

Thus,


It can be clearly seen that the fraction
is in lowest form.
Hence,
is not divisible by 3.
Thus, by contrapositivity if
is divisible by 3, the n is also divisible by 3.
C
let y = f(x)
Then rearrange making x the subject
y = -
x - 18 ( add 18 to both sides )
y + 18 = -
x
multiply both sides by - 
-
(y + 18) = x
x = -
y - 27
change y to x for inverse function
(x) = -
x - 27 → C