Answer:
1.2
Step-by-step explanation:
the data represents the heights of fourteen basketball players, in inches. 69, 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77, 8
Daniel [21]
If you would like to know the interquartile range of the new set and the interquartile range of the original set, you can do this using the following steps:
<span>The interquartile range is the difference between the third and the first quartiles.
The original set: </span>69, 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77, 82
Lower quartile: 72
Upper quartile: 76.25
Interquartile range: upper quartile - lower quartile = 76.25 - 72 = <span>4.25
</span>
The new set: <span>70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77
</span>Lower quartile: 72.5
Upper quartile: 76
Interquartile range: upper quartile - lower quartile = 76 - 72.5 = 3.5
The correct result would be: T<span>he interquartile range of the new set would be 3.5. The interquartile range of the original set would be more than the new set.</span>
14.
Angles 4 and 6 are supplementary, because they are on the same line. Supplementary angles add up to 180 degrees, and a line must be 180 degrees.
15.
Angles 1 and 8 are congruent, because they are alternate exterior angles
16.
m = y2 - y1 / x2 - x1
m = 7 - 2 / 4 - 5
m = 5 / -1
m = -5
17.
m = 3 - 3 / 7 - (-5)
m = 0 / 12
m = 0
18.
m = 1 - (-2) / 5 - (-4)
m = 3 / 9
m = 1/3
19.
A = (0, 3) - B = (3,0)
m = 0 - 3 / 3 - 0
m = -3 / 3
<em>m = -1</em>
C = (0, -2) - D = (4, 2)
m = 2 - (-2) / 4 - 0
m = 4 / 4
<em>m = 1</em>
Perpendicular, because the slopes are opposite reciprocals.
20.
E = (1, 2) - F = (0, 0)
m = 0 - 2 / 0 - 1
m = -2 / -1
<em>m = 2</em>
G = (1, -3) - H = (3, 0)
m = 0 - (-3) / 3 - 1
<em>m = 3 / 2</em>
Neither, because the slopes are different.
21.
I = (0, 1) - J = (2, -4)
m = -4 - 1 / 2 - 0
<em>m = -5/2</em>
K = (-1, -2) - L = (4, 0)
m = 0 - (-2) / 4 - (-1)
<em>m = 2/5</em>
Perpendicular, because the slopes are opposite reciprocals.
22.
M = (-2, 2) - N = (2, 2)
Horizontal line
<em>m = 0</em>
O = (3, 0) - P = (-3, 0)
Horizontal line
<em>m = 0
</em>Parallel, because the slopes are the same.
<em>
</em>23.
Angle 2 is congruent to angle 1 because of the alternate exterior angle theorem.
Angle 1 is congruent to angle 3 because of the vertical angle theorem.
Angle 2 is congruent to angle 3 because of substitution.
Line l is parallel to line m because the corresponding angles are congruent.