Answer:
a) z = 2.327
b) The margin of error is of 0.065.
c) The 98% confidence interval for the true population proportion of all New York State union members who favor the Republican candidate is (0.3083, 0.4383).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.
![\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}](https://tex.z-dn.net/?f=%5Cpi%20%5Cpm%20z%5Csqrt%7B%5Cfrac%7B%5Cpi%281-%5Cpi%29%7D%7Bn%7D%7D)
In which
z is the zscore that has a pvalue of
.
For this problem, we have that:
![n = 300, \pi = \frac{112}{300} = 0.3733](https://tex.z-dn.net/?f=n%20%3D%20300%2C%20%5Cpi%20%3D%20%5Cfrac%7B112%7D%7B300%7D%20%3D%200.3733)
a) 98% confidence level
So
, z is the value of Z that has a pvalue of
, so
is the critical value.
b)
The margin of error is:
![M = z\sqrt{\frac{\pi(1-\pi)}{n}}](https://tex.z-dn.net/?f=M%20%3D%20z%5Csqrt%7B%5Cfrac%7B%5Cpi%281-%5Cpi%29%7D%7Bn%7D%7D)
So, applying to this question:
![M = 2.327\sqrt{\frac{0.3733(1-0.3733)}{300}} = 0.065](https://tex.z-dn.net/?f=M%20%3D%202.327%5Csqrt%7B%5Cfrac%7B0.3733%281-0.3733%29%7D%7B300%7D%7D%20%3D%200.065)
The margin of error is of 0.065.
c) Find confidence interval for the problem.
![\pi - M = 0.3733 - 0.065 = 0.3083](https://tex.z-dn.net/?f=%5Cpi%20-%20M%20%3D%200.3733%20-%200.065%20%3D%200.3083)
![\pi + M = 0.3733 + 0.065 = 0.4383](https://tex.z-dn.net/?f=%5Cpi%20%2B%20M%20%3D%200.3733%20%2B%200.065%20%3D%200.4383)
The 98% confidence interval for the true population proportion of all New York State union members who favor the Republican candidate is (0.3083, 0.4383).