Can you tell how much she selled? Then I can answer it
Answer:
Well, assuming that these are cubes labeled 1-6, there is a 1/12 chance of the sum equaling 2, since they would both have to land on 1
Step-by-step explanation:
since we know the endpoints of the circle, we know then that distance from one to another is really the diameter, and half of that is its radius.
we can also find the midpoint of those two endpoints and we'll be landing right on the center of the circle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-2-(-4)]^2+[-5-(-7)]^2}\implies d=\sqrt{(-2+4)^2+(-5+7)^2} \\\\\\ d=\sqrt{2^2+2^2}\implies d=\sqrt{2\cdot 2^2}\implies d=2\sqrt{2}~\hfill \stackrel{~\hfill radius}{\cfrac{2\sqrt{2}}{2}\implies\boxed{ \sqrt{2}}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-7%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-2-%28-4%29%5D%5E2%2B%5B-5-%28-7%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-2%2B4%29%5E2%2B%28-5%2B7%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B2%5E2%2B2%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B2%5Ccdot%202%5E2%7D%5Cimplies%20d%3D2%5Csqrt%7B2%7D~%5Chfill%20%5Cstackrel%7B~%5Chfill%20radius%7D%7B%5Ccfrac%7B2%5Csqrt%7B2%7D%7D%7B2%7D%5Cimplies%5Cboxed%7B%20%5Csqrt%7B2%7D%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{-2-4}{2}~~,~~\cfrac{-5-7}{2} \right)\implies \left( \cfrac{-6}{2}~,~\cfrac{-12}{2} \right)\implies \stackrel{center}{\boxed{(-3,-6)}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-7%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7B-2-4%7D%7B2%7D~~%2C~~%5Ccfrac%7B-5-7%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%20%5Ccfrac%7B-6%7D%7B2%7D~%2C~%5Ccfrac%7B-12%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cstackrel%7Bcenter%7D%7B%5Cboxed%7B%28-3%2C-6%29%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-3}{ h},\stackrel{-6}{ k})\qquad \qquad radius=\stackrel{\sqrt{2}}{ r} \\[2em] [x-(-3)]^2+[y-(-6)]^2=(\sqrt{2})^2\implies (x+3)^2+(y+6)^2=2](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Cqquad%20center~~%28%5Cstackrel%7B-3%7D%7B%20h%7D%2C%5Cstackrel%7B-6%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20radius%3D%5Cstackrel%7B%5Csqrt%7B2%7D%7D%7B%20r%7D%20%5C%5C%5B2em%5D%20%5Bx-%28-3%29%5D%5E2%2B%5By-%28-6%29%5D%5E2%3D%28%5Csqrt%7B2%7D%29%5E2%5Cimplies%20%28x%2B3%29%5E2%2B%28y%2B6%29%5E2%3D2)
Answer:
The amount Chris started within his savings is $44. option C
Step-by-step explanation:
Amount Chris saved = $xAmount spent on video games = 1/2xAdditional amount earned = $10Total = $321/2x + 10 = 32subtract 10 from both sides1/2x = 32 - 101/2x = 22divide both sides by 1/2x = 22 ÷ 1/2x = 22 × 2/1x = $44Therefore, the amount Chris started within his savings is $44. option C
Hope this helped !!!!