Answer:
Answer is C.
Explanation:
For A and B, a base substitution affects one of the three bases that comprise a codon, the DNA/RNA unit that corresponds to a particular amino acid. If one base is substituted, one codon and therefore one amino acid will be affected. Codons have built-in redundancy, so even by changing one base, the new codon sometimes still corresponds to the same amino acid. Therefore, a base substitution at most affects one amino acid, and sometimes doesn't affect it all.
Frameshift mutations cause a lot more trouble. These occur when you have a deletion or insertion that changes the number of bases in your gene. As a result, the "frame" of the codons changes (everything shifts one way or the other by the number of bases added/removed). This affects EVERY codon downstream of the mutation, so you can imagine that such a mutation would have a bigger effect the closer to the start of the gene it occurs. This is why C is correct.
No it is not possible since there can be dominated or recessive alleles involved. A heterozygous for a specific gene can display the same phenotype as a homozygous for the same gene.
Answer:
I am going to give you the material so that you can be your doubt but I will not solve it because that is the basis of your learning that you react to what you are reading
In Mendel's "Experiment 1", pea plants with smooth seeds intersect with pea plants with rough seeds. (smooth seeds is the dominant feature). Mendel collected the seeds of this cross, the plants and obtained the F1-generation of plants, let them self-pollinate to form a second generation, and analyzed the seeds of the F2 generation. The results they obtained; And the ones you would predict in this experiment are:
Guide
F1-generation plants
Mendel crossed SS (smooth seeds) with ss (rough seeds.)
All the gametes of parents smooth seeds, have the allele S (dominant) and all the gametes of parents rough seeds have the allele s (recessive). All the plants of the F1 generation will affect the Ss genotype (heterozygous), and all the seeds smooth seeds.
Generation-F2 plants
Mendel let the F1-generation plants self-pollinate to form a second generation and analyzed the seeds of the resulting F2 generation.
F2 generation
All F1 hybrid plants have the Ss genotype and all are smooth (dominant characteristic). Recessive alleles are secreted during gamete formation. As a result, one in four possible combinations in F2 generation plants will have the recessive homozygous genotype (ss).
Answer:
smaller and less smooth i think