<span>the atomic mass of nitrogen is 14. There is 1 nitrogen atom in the molecule so the percentage of N is :
14/35 x100% = 40%</span>
Answer:
Explanation:
1 = The given chemical reaction does not follow the law of conservation of mass because,
2 = Four hydrogen atoms are present in reactant side and two hydrogen atoms are present in product side.
3 = 1 ) The given chemical reaction does not follow the law of conservation of mass because,
CH₄ + O₂ → CO₂ + H₂O
16 g + 32 g 44 g + 18 g
48 g 62 g
Law of conservation of mass:
This law stated that mass can not be created or destroyed in chemical reaction. It just changed from one to another form.
For example:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
28 g + 96 g = 88 g + 36 g
124 g = 124 g
Answer:
A homogenous mixture is a mixture that is uniform in composition. This means that you cannot apart the individual elements that make up the mixture.
Explanation:
Answer:
SrSO4
Explanation:
According to solubility rules, we know that the sulphates of the elements of group two are insoluble in water. The solubility rules describe what chemical species are soluble in water and what species are not soluble in water.
Generally, all chlorides are soluble in water with exception of chlorides such as silver chloride. The chlorides of group one elements are usually highly soluble in water.
Since SrSO4 is a sulphate of a group two element (strontium) it will be the insoluble solid product of the double displacement reaction described in the question.
Answer:
Q was < K. Partial pressure of hydrogen decreased, iodine increased
Explanation:
<em>After iodine was added the Q was [Select] K so the reaction shifted toward the Products [Select] ,The partial pressure of hydrogen [Select], Iodine [Select] |,and hydrogen iodide Decreased</em>
Based on the equilibrium:
H2(g) + I2(g) ⇄ 2HI(g)
K of equilibrium is:
K = [HI]² / [H2] [I2]
<em>Where [] are concentrations at equilibrium</em>
And Q is:
Q = [HI]² / [H2] [I2]
<em>Where [] are actual concentrations of the reactants.</em>
<em />
When the reaction is in equilibrium, K=Q.
But as [I2] is increased, Q decreases and Q was < K
The only concentration that increases is [I2], doing partial pressure of hydrogen decreased, iodine increased