Decreased, this is due to the roots of the plants holding the soil together
Answer:
k= 1.925×10^-4 s^-1
1.2 ×10^20 atoms/s
Explanation:
From the information provided;
t1/2=Half life= 1.00 hour or 3600 seconds
Then;
t1/2= 0.693/k
Where k= rate constant
k= 0.693/t1/2 = 0.693/3600
k= 1.925×10^-4 s^-1
Since 1 mole of the nuclide contains 6.02×10^23 atoms
Rate of decay= rate constant × number of atoms
Rate of decay = 1.925×10^-4 s^-1 ×6.02×10^23 atoms
Rate of decay= 1.2 ×10^20 atoms/s
Answer:

Explanation:
Hello.
In this case, since the neutralization of the acid requires equal number of moles of both acid and base:

Whereas we can express it in terms of concentrations and volumes:

Thus, we can compute the volume of sodium hydroxide (base) as follows:

Best regards.
Answer:
0.4 moles of water produced by 6.25 g of oxygen.
Explanation:
Given data:
Mass of oxygen = 6.25 g
Moles of water produced = ?
Solution:
Chemical equation;
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 6.35 g/ 32 g/mol
Number of moles = 0.2 mol
Now we will compare the moles of oxygen with water:
O₂ : H₂O
1 : 2
0.2 : 2×0.2 = 0.4 mol
0.4 moles of water produced by 6.25 g of oxygen.
The concentration of diluted solution is 0.756M.
From the question given above, the following data were obtained:
Volume of stock solution (V1) = 18.9 mL
Molarity of stock solution (M1) = 10 M
Volume of diluted solution (V2) = 250 mL
Molarity of diluted solution (M2) =?
We can obtain the molarity of the diluted solution by using the dilution formula as shown follow:
M1V1 = M2V2
10 × 18.9 = M2 ×250
189 = M2 × 250
Divide both side by 100
M2 = 189 / 250
M2 = 0.756 M
Therefore, the molarity of the diluted solution is 0.756 M.
Thus the concluded that concentration of the dilute acid is 0.756 M.
Learn more about concentration of diluted solution: brainly.com/question/10725862
#SPJ4