The mass of the wire is found to be 40π√2 units.
<h3>How to find the mass?</h3>
To calculate the mass of the wire which runs along the curve r ( t ) with the density function δ=5.
The general formula is,
Mass = ![\int_a^b \delta\left|r^{\prime}(t)\right| d t](https://tex.z-dn.net/?f=%5Cint_a%5Eb%20%5Cdelta%5Cleft%7Cr%5E%7B%5Cprime%7D%28t%29%5Cright%7C%20d%20t)
To find, we must differentiate this same given curve r ( t ) with respect to t to estimate |r'(t)|.
The given integration limits in this case are a = 0, b = 2π.
Now, as per the question;
The equation of the curve is given as;
r(t) = (4cost)i + (4sint)j + 4tk
Now, differentiate this same given curve r ( t ) with respect to t.
![\begin{aligned}\left|r^{\prime}(t)\right| &=\sqrt{(-4 \sin t)^2+(4 \cos t)^2+4^2} \\&=\sqrt{16 \sin ^2 t+16 \cos ^2 t+16} \\&=\sqrt{16\left(\sin t^2+\cos ^2 t\right)+16}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cleft%7Cr%5E%7B%5Cprime%7D%28t%29%5Cright%7C%20%26%3D%5Csqrt%7B%28-4%20%5Csin%20t%29%5E2%2B%284%20%5Ccos%20t%29%5E2%2B4%5E2%7D%20%5C%5C%26%3D%5Csqrt%7B16%20%5Csin%20%5E2%20t%2B16%20%5Ccos%20%5E2%20t%2B16%7D%20%5C%5C%26%3D%5Csqrt%7B16%5Cleft%28%5Csin%20t%5E2%2B%5Ccos%20%5E2%20t%5Cright%29%2B16%7D%5Cend%7Baligned%7D)
Further simplifying;
![\begin{aligned}&=\sqrt{16(1)+16} \\&=\sqrt{16+16} \\&=\sqrt{32} \\\left|r^{\prime}(t)\right| &=4 \sqrt{2}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26%3D%5Csqrt%7B16%281%29%2B16%7D%20%5C%5C%26%3D%5Csqrt%7B16%2B16%7D%20%5C%5C%26%3D%5Csqrt%7B32%7D%20%5C%5C%5Cleft%7Cr%5E%7B%5Cprime%7D%28t%29%5Cright%7C%20%26%3D4%20%5Csqrt%7B2%7D%5Cend%7Baligned%7D)
Now, use integration to find the mass of the wire;
![\begin{aligned}&=\int_a^b \delta\left|r^{\prime}(t)\right| d t \\&=\int_0^{2 \pi} 54 \sqrt{2} d t \\&=20 \sqrt{2} \int_0^{2 \pi} d t \\&=20 \sqrt{2}[t]_0^{2 \pi} \\&=20 \sqrt{2}[2 \pi-0] \\&=40 \pi \sqrt{2}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26%3D%5Cint_a%5Eb%20%5Cdelta%5Cleft%7Cr%5E%7B%5Cprime%7D%28t%29%5Cright%7C%20d%20t%20%5C%5C%26%3D%5Cint_0%5E%7B2%20%5Cpi%7D%2054%20%5Csqrt%7B2%7D%20d%20t%20%5C%5C%26%3D20%20%5Csqrt%7B2%7D%20%5Cint_0%5E%7B2%20%5Cpi%7D%20d%20t%20%5C%5C%26%3D20%20%5Csqrt%7B2%7D%5Bt%5D_0%5E%7B2%20%5Cpi%7D%20%5C%5C%26%3D20%20%5Csqrt%7B2%7D%5B2%20%5Cpi-0%5D%20%5C%5C%26%3D40%20%5Cpi%20%5Csqrt%7B2%7D%5Cend%7Baligned%7D)
Therefore, the mass of the wire is estimated as 40π√2 units.
To know more about density function, here
brainly.com/question/27846146
#SPJ4
The complete question is-
Find the mass of the wire that lies along the curve r and has density δ.
r(t) = (4cost)i + (4sint)j + 4tk, 0≤t≤2π; δ=5