Answer:
Half-life = 3 minutes
Explanation:
Using the radioactive decay equation we can solve for reaction constant, k. And by using:
K = ln2 / Half-life
We can find half-life of polonium-218
Radioactive decay:
Ln[A] = -kt + ln [A]₀
Where:
[A] could be taken as mass of polonium after t time: 1.0mg
k is Reaction constant, our incognite
t are 12 min
[A]₀ initial amount of polonium-218: 16mg
Ln[A] = -kt + ln [A]₀
Ln[1.0mg] = -k*12min + ln [16mg]
-2.7726 = - k*12min
k = 0.231min⁻¹
Half-life = ln 2 / 0.231min⁻¹
<h3>Half-life = 3 minutes</h3>
Answer:
525.1 g of BaSO₄ are produced.
Explanation:
The reaction of precipitation is:
Na₂SO₄ (aq) + BaCl₂ (aq) → BaSO₄ (s) ↓ + 2NaCl (aq)
Ratio is 1:1. So 1 mol of sodium sulfate can make precipitate 1 mol of barium sulfate.
The excersise determines that the excess is the BaCl₂.
After the reaction goes complete and, at 100 % yield reaction, 2.25 moles of BaSO₄ are produced.
We convert the moles to mass: 2.25 mol . 233.38 g/mol = 525.1 g
The precipitation's equilibrium is:
SO₄⁻² (aq) + Ba²⁺ (aq) ⇄ BaSO₄ (s) ↓ Kps
The best and correct answer is B, the weather
Hope this helped!!
Both. Every nucleotide has a sugar, a nitrogenous base, and a phosphate group