This is hard to show but here is how you would determine these. NOTE each dot is an electron.
<span>Question 1) </span>
<span>F-H </span>
<span>1) determine the valance electrons for each. F has 7 and H has 1 </span>
<span>2) one electron from both F and H form the bond "-" which means that you still have 6 electrons to place around F and none to place around H. Place the 6 in sets of 2 around the F </span>
<span>.. </span>
<span>F-H </span>
<span>¨ </span>
<span>Question 2) </span>
<span>2) H-O-H </span>
<span>H has 1 valence electron minus 1 used in the bond to O = 0 electrons to place </span>
<span>H has 1 valence electron minus 1 used in the bond to O = 0 electrons to place </span>
<span>O has 6 valence electrons minus 2 used in the bonds to the H's = 4 electrons to place </span>
<span>H-O-H: place two dots above and below the oxygen </span>
<span>Question 3) </span>
<span>3) O=N----H : NOTE: a double bond requires O and N to share two of their electrons each </span>
<span>O has 6 valence electrons minus 2 used in the bonds to N = 4 electrons to place </span>
<span>N has 5 valence electrons minus 3 used in the bonds to O and H = 2 electrons to place </span>
<span>H has 1 valence electron minus 1 used in the bond to N = 0 electrons to place </span>
<span>place the 2 dots on top and bottom of oxygen. </span>
<span>place 2 above the N </span>
<h3><u>Answer;</u></h3>
<em>All the above</em>
Workers at construction sites often reduce erosion by;
- <em>Moving excess sediment back to its original location
</em>
- <em>Planting trees
</em>
- <em>Spraying water on bare soil</em>
<h3><u>Explanation;</u></h3>
- Soil erosion is a naturally occurring process which involves the wearing away of the topsoil by natural forces such as wind, water or other forces associated with farming.
- <em><u>Construction of roads and buildings results to large amounts of soil erosion around the world. It is therefore important to put measures that would help reduce soil erosion at construction sites</u></em>. These measures uses principals of soil control such as implementing sediment control, limiting soil exposure, reducing the runoff velocity, and modifying topography among others.
Answer:
Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
Explanation:
In writing the cell notation for an electrochemical cell, the anode is written on the left hand side while the cathode is written on the right hand side. The two half cells are separated by two thick lines which represents the salt bridge.
For the cell discussed in the question; the Mn(s)/Mn^2+(aq) is the anode while the Co^2+(aq)/Co(s) half cell is the cathode.
Hence I can write; Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
This is an acid – base reaction and this always result a salt and water
in a neutralization reaction. <span>
The salt that is formed will be calcium bromide (calcium
is located in group 2 so calcium bromide has a formula of CaBr2)
so essentially we got:
HBr + Ca(OH)2 ------> CaBr2 + H2O </span>
balancing the elements: <span>
<span>2HBr(aq) + Ca(OH)2(aq) --------> CaBr2(aq) +
2H2O(l)</span></span>