When you refer to how close a measured value is to a standard, accepted or known value, you are talking about the ACCURACY of the data. This is the definition of accuracy when it comes to engineering and other fields of science.
Accuracy is usually associated or with the term precision, as their definitions are often interchanged.
Some call it "air resistance", and others just call it "drag".
First, calculate how long the ball is in midair. This will depend only on the vertical displacement; once the ball hits the ground, projectile motion is over. Since the ball is thrown horizontally, it originally has no vertical speed.
t = time vi = initial vertical speed = 0m/s g = gravity = -9.8m/s^2 y = vertical displacement = -45m
y = .5gt^2 [Basically, in this equation we see how long it takes the ball to fall 45m] -45m = .5 (-9.8m/s^2) * t^2 t = 3.03 s
Now we know that the ball is midair for 3.03s. Since horizontal speed is constant we can simply use:
x = horizontal displacement v = horizontal speed = 25m/s t = time = 3.03s
x = v*t x = 25m/s * 3.03s = 75.76 m Thus, the ball goes about 75 or 76 m from the base of the cliff.
Answer:
(a) Time t = 16.46 sec
(b) Time t =13.466 sec
(c) Deceleration = 
Explanation:
(a) As the train starts from rest its initial velocity u = 0 m/sec
Acceleration 
Final speed v = 80 km/hr

From first equation of motion v =u+at
So 
(b) Now initial speed u = 22.22 m/sec
As finally train comes to rest so final speed v=0 m/sec
Deceleration 
So 
(c) We have given that initial velocity = 80 km/hr = 22.22 m/sec
Final velocity v = 0 m/sec
Time t = 8.30 sec
So acceleration is given by

As acceleration is negative so it is a deceleration