Answer:
In collisions between two isolated objects Newton's third law implies that momentum is always conserved. In collisions between two isolated objects momentum is always conserved. Kinetic energy is only conserved in elastic collisions.
Explanation:
Explanation:
Let f₁ is the fundamental frequency, 
Lower pitch frequency, 
Fundamental frequency is,
.....(1)
Lower frequency is,
..............(2)
Dividing equation (1) and (2) as :




So, the ratio of linear mass density μ of the string with the higher pitch to that of the string with the lower pitch is 0.00132. Hence, this is the required solution.
Answer:

Explanation:
The amplitude of he combined wave is:

A, is the amplitude from the identical harmonic waves
B, is the amplitude of the resultant wave
θ, is the phase, between the waves
The amplitude of the combined wave must be 0.6A:

(a) 1200 rad/s
The angular acceleration of the rotor is given by:

where we have
is the angular acceleration (negative since the rotor is slowing down)
is the final angular speed
is the initial angular speed
t = 10.0 s is the time interval
Solving for
, we find the final angular speed after 10.0 s:

(b) 25 s
We can calculate the time needed for the rotor to come to rest, by using again the same formula:

If we re-arrange it for t, we get:

where here we have
is the initial angular speed
is the final angular speed
is the angular acceleration
Solving the equation,

Answer: rotational force
Explanation:
Torque is the twisting force which cause rotation and the axis of rotation is the point at which the object rotates.
Torque is a rotational force as it leads to the rotation of an object about an axis. Force simply means a pull or push. When an unbalanced ball acts on a force, the ball, the ball will be moved towards the linear motion.
Then, the unbalanced force that is acting in the ball produces torque which causes the ball's rotational motion.