A car driving up a hill at a constant speed experiences no change in its kinetic energy while it's potential energy increases with increasing height, thus none of the options are correct.
Understanding the concept
Consider a car moving up the hill at a constant speed as shown in the figure below. The following forces act on the car:
- N is the normal reaction force acting in an upward direction
- f_s is the static friction force exerted due to friction between the road and the tires of the car
- f_k is the rolling friction force in the direction opposing that of the tire
- mg is the force acting in a downward direction.
- θ is the angle of inclination.
Here as the car is moving up the hill at a constant speed, the net force exerted on the car is zero. Also, the kinetic energy of the car will not change as its velocity is constant and the potential energy will change with increasing height. Thus, none of the given options are correct.
Learn more about motion on an incline here:
<u>brainly.com/question/13513083</u>
#SPJ4
Answer:
D: It shows that Frida Kahlo used art to cope with her pain.
Explanation:
Within the text given it shows her emotions being lonely, immobile and in pain. But it all shows her asking her father for art which states that art is her sort of relief and happy place.
Answer:
B.useful products
Explanation:
industry is a sector that produces goods or services within an economy
C is the answer hope that helps you
I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .