Answer:
C) The ratio of the change in an object's length to its original length when stretched or compressed.
Explanation:
The formula for strain is:
Strain = Change in Length/Origin Length
Hence, it can be described as the percentile of change in the dimension with respect to the original dimension. So, whenever a tensile or a compressive force is applied on a body, its length changes. The ratio of this change to original length is called strain. So, the correct option is:
C) <u>The ratio of the change in an object's length to its original length when stretched or compressed.</u>
If it is the same vehicle, then the 60mph vehicle has more kinetic energy since it is moving faster. Therefore, it requires more energy to stop, and if it is the same car with the same beak system, the braking distance of the 30mph car will be significantly shorter than the 60mph car.
Answer:
D) shrivel up, since the atmosphere exerts more force on the can as it cools.
Explanation:
As the water in the can is boiled the can gets heated up and contains hot vapour and gases which are rare in density and are in their expanded state. In this state when the can is sealed tightly such that no air leaks in or out of the can. When the temperature of the can drops, the gases shrink in volume and the pressure inside the can become less than the pressure of the atmosphere which leads to shriveling of the can.
Hi!
The answer is <span>B. Language influences how people understand their world.
Hope this helps!
-Payshence xoxo</span>
Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is 1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:

where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>