Given:
Initial speed of the motorcycle (u) = 35 m/s
Final speed of the motorcycle (v) = 0 m/s (Complete Stop)
Maximum deceleration of the motorcycle (a) = -1.2 m/s²
Required Equation:

Answer:
By substituting values in the equation, we get:

Time taken by motorcycle to come to a complete stop (t) = 29.167 s
F is force, m is mass and a<span> is acceleration. The math behind this is quite simple. If you double the force, you double the acceleration, but if you double the mass, you cut the acceleration in half.</span>
To determine the energy equivalent of an object, we use the famous equation of Einstein which is E=mc^2 where m is the mass of the object and c is the speed of light (3x10^8 m/s). We calculate as follows:
E = mc^2
E = 4.1 kg (3x10^8 m/s)^2
E = 3.69x10^17 J
Answer : The de-Broglie wavelength of this electron, 
Explanation :
The formula used for kinetic energy is,
..........(1)
According to de-Broglie, the expression for wavelength is,

or,
...........(2)
Now put the equation (2) in equation (1), we get:
...........(3)
where,
= wavelength = ?
h = Planck's constant = 
m = mass of electron = 
K.E = kinetic energy = 
Now put all the given values in the above formula (3), we get:


conversion used : 
Therefore, the de-Broglie wavelength of this electron, 