we will proceed to resolve each case to determine the solution
we have


we know that
If an ordered pair is the solution of the inequality, then it must satisfy the inequality.
<u>case a)</u> 
Substitute the value of x and y in the inequality

-------> is true
so
The ordered pair
is a solution
<u>case b)</u> 
Substitute the value of x and y in the inequality

-------> is False
so
The ordered pair
is not a solution
<u>case c)</u> 
Substitute the value of x and y in the inequality

-------> is False
so
The ordered pair
is not a solution
<u>case d)</u> 
Substitute the value of x and y in the inequality

-------> is True
so
The ordered pair
is a solution
<u>case e)</u> 
Substitute the value of x and y in the inequality

-------> is False
so
The ordered pair
is not a solution
Verify
using a graphing tool
see the attached figure
the solution is the shaded area below the line
The points A and D lies on the shaded area, therefore the ordered pairs A and D are solution of the inequality
165
5x5= 25
12x12=144
25+144= 165
The answer is g(x) = x².
Solution:
The graph of h(x) = x²+9 translated vertically downward by 9 units means that each point (x, h(x)) is shifted onto the point (x, h(x) - 9), that is,
(x, h(x)) → (x, h(x) - 9)
The translated graph that represents the function is defined by the expression for g(x):
g(x) = h(x) - 9 = x² + 9 - 9 = x²
h(x) = x²+9 → g(x) = x² shows that the graph of the equation g(x) = x² moves the graph of h(x) = x²+9 down nine units.