1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sindrei [870]
3 years ago
14

You are given 4 matrices M1, M2, M3, M4 and you are asked to determine the optimal schedule for the product M1 ×M2 × M3 ×M4 that

minimizes the number of operations (addition/multiplication) involved. The dimensions of the four matrices are respectively 100 × 50, 50 × 200, 200 × 50, and 50 × 10. What is the best (cheapest) schedule to multiply all the matrices together and compute M1 × M2 × M3 × M4? What is the total cost for this schedule?

Mathematics
1 answer:
alexandr1967 [171]3 years ago
7 0

Answer:

Step-by-step explanation:

first method is to try out all possible combinations and pick out the best one which has the minimum operations but that would be infeasible method if the no of matrices increases  

so the best method would be using the dynamic programming approach.

A1 = 100 x 50

A2 = 50 x 200

A3 = 200 x 50

A4 = 50 x 10

Table M can be filled using the following formula

Ai(m,n)

Aj(n,k)

M[i,j]=m*n*k

The matrix should be filled diagonally i.e., filled in this order

(1,1),(2,2)(3,3)(4,4)

(2,1)(3,2)(4,3)

(3,1)(4,2)

(4,1)

<u>                  Table M[i, j]                                             </u>

             1                      2                  3                    4

4    250000          200000        100000                0  

3      

750000        500000            0

2      1000000             0

1            

0

Table S can filled this way

Min(m[(Ai*Aj),(Ak)],m[(Ai)(Aj*Ak)])

The matrix which is divided to get the minimum calculation is selected.

Table S[i, j]

           1          2         3        

4

4          1           2         3

3          

1          2

2            1

1

After getting the S table the element which is present in (4,1) is key for dividing.

So the matrix multiplication chain will be (A1 (A2 * A3 * A4))

Now the element in (4,2) is 2 so it is the key for dividing the chain

So the matrix multiplication chain will be (A1 (A2 ( A3 * A4 )))

Min number of multiplications: 250000

Optimal multiplication order: (A1 (A2 ( A3 * A4 )))

to get these calculations perform automatically we can use java

code:

public class MatrixMult

{

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

int[] p = getMatrixSizes(args);

int n = p.length-1;

if (n < 2 || n > 15)

{

System.out.println("Wrong input");

System.exit(0);

}

System.out.println("######Using a recursive non Dyn. Prog. method:");

int mm = RMC(p, 1, n);

System.out.println("Min number of multiplications: " + mm + "\n");

System.out.println("######Using bottom-top Dyn. Prog. method:");

MCO(p);

System.out.println("Table of m[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%5d ", i);

System.out.print("\n---+");

for (int i=1; i<=6*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=1; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j; i++)

System.out.printf("%5d ", m[i][j]);

System.out.println();

}

System.out.println("Min number of multiplications: " + m[1][n] + "\n");

System.out.println("Table of s[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%2d ", i);

System.out.print("\n---+");

for (int i=1; i<=3*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=2; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j-1; i++)

System.out.printf("%2d ", s[i][j]);

System.out.println();

}

System.out.print("Optimal multiplication order: ");

MCM(s, 1, n);

System.out.println("\n");

System.out.println("######Using top-bottom Dyn. Prog. method:");

mm = MMC(p);

System.out.println("Min number of multiplications: " + mm);

}

public static int RMC(int[] p, int i, int j)

{

if (i == j) return(0);

int m_ij = Integer.MAX_VALUE;

for (int k=i; k<j; k++)

{

int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-1]*p[k]*p[j];

if (q < m_ij)

m_ij = q;

}

return(m_ij);

}

public static void MCO(int[] p)

{

int n = p.length-1;     // # of matrices in the product

m    =    new    int[n+1][n+1];        //    create    and    automatically initialize array m

s = new int[n+1][n+1];

for (int l=2; l<=n; l++)

{

for (int i=1; i<=n-l+1; i++)

{

int j=i+l-1;

m[i][j] = Integer.MAX_VALUE;

for (int k=i; k<=j-1; k++)

{

int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if (q < m[i][j])

{

m[i][j] = q;

s[i][j] = k;

}

}

}

}

}

public static void MCM(int[][] s, int i, int j)

{

if (i == j) System.out.print("A_" + i);

else

{

System.out.print("(");

MCM(s, i, s[i][j]);

MCM(s, s[i][j]+1, j);

System.out.print(")");

}

}

public static int MMC(int[] p)

{

int n = p.length-1;

m = new int[n+1][n+1];

for (int i=0; i<=n; i++)

for (int j=i; j<=n; j++)

m[i][j] = Integer.MAX_VALUE;

return(LC(p, 1, n));

}

public static int LC(int[] p, int i, int j)

{

if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

if (i == j) m[i][j] = 0;

else

{

for (int k=i; k<j; k++)

{

int   q   =   LC(p,   i,   k)   +   LC(p,   k+1,   j)   +   p[i-1]*p[k]*p[j];

if (q < m[i][j])

m[i][j] = q;

}

}

return(m[i][j]);

}

public static int[] getMatrixSizes(String[] ss)

{

int k = ss.length;

if (k == 0)

{

System.out.println("No        matrix        dimensions        entered");

System.exit(0);

}

int[] p = new int[k];

for (int i=0; i<k; i++)

{

try

{

p[i] = Integer.parseInt(ss[i]);

if (p[i] <= 0)

{

System.out.println("Illegal input number " + k);

System.exit(0);

}

}

catch(NumberFormatException e)

{

System.out.println("Illegal input token " + ss[i]);

System.exit(0);

}

}

return(p);

}

}

output:

You might be interested in
What is the slope intercept ?<br><br> Please help me !!!
Allushta [10]
I’m pretty sure the answer is m= -6/5 I’m not sure tho
6 0
3 years ago
Distance: Jack and Jill start from the same point and walk in'opposite directions. Jack
777dan777 [17]

Answer:

t = 6 km/hour

And, J would be 4 km per hour

Step-by-step explanation:

Let us assume the speed of Tom be T

And, the Speed of Jim  be J

Given that  

T - J = 2 km /hr ...........(i)

After 3 hours distance between them  = 30 km

As they are walking in the opposite direction

Thus,  

Net speed =T + J

L ÷ (T+J) = 3

30 ÷ (T+J) = 3

T +J =10 ..............(2)

After solving these two equations

2T = 12

t = 6 km/hour

And, J would be 4 km per hour

6 0
2 years ago
The table represents a function. What is the value of f(–1)?
Afina-wow [57]

Answer : C

we need to  the value of f(–1)

Table is given in the question

From the table ,

f(x) = 4 when x= -5, that is f(-5) = 4

f(x) = 0 when x= -1, that is f(-1) =0

f(x)= -1 when x=6, that is f(6) = -1

f(x)= -3 when x=9, that is f(9) = -3

So, the value of f(–1) = 0



3 0
3 years ago
Read 2 more answers
A ruler costs pence.
Katarina [22]

Answer:

2x+3(10+x)

Step-by-step explanation:

I'm not sure but I think this might be the answer

8 0
2 years ago
The ordered pair (-2, 12) is a solution of the inequality y &gt; -5x + 2.<br><br> True<br><br> False
mel-nik [20]
The answer should be True!

Hope it helped you.


-Charlie

:)
4 0
3 years ago
Read 2 more answers
Other questions:
  • Relative to the circle with the equation x^2 + y^2 = 4 how has the circle with the equation (x+5)^2 + (y-6)^2 = 4 been shifted,
    7·2 answers
  • Explain how knowing 50 x 4 = 200 helps you find 500 X 400?
    12·1 answer
  • Free points! pls and quick!
    10·2 answers
  • How many different outcomes are possible for seven people seated in chairs arranged in a line?
    8·1 answer
  • Mom and Dad have four daughters, and each daughter has one brother. How many people are in the family?
    14·1 answer
  • The EXPAND equation of the polynomial function is f(x)= (x-2)(x-5)(x-sqrt3)(x+sqrt3) 15 POINTS Please explain as well if you can
    15·1 answer
  • Can you answer 1 and 2
    15·1 answer
  • NEEEEEEED HEEEEEEEELP !!!!!!!!!!!!!!!!! 13 POINTSSSSSS
    10·2 answers
  • ABCD is a parallelogram. If m
    8·1 answer
  • Gracy was running errands around her neighborhood. First she went to the doctors but they were closed. She then drove to her hou
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!