The reflection transformation in the question is a rigid transformation,
therefore, the image and the preimage are congruent.
The statements that are true are;
Reasons:
The given parameter are;
Triangle ΔABC is reflected across the line 2·X, to map onto triangle ΔRST
Required:
To select the true statements
Solution:
A reflection is a rigid transformation, therefore, the distance between corresponding points on the image and the preimage are equal.
Therefore;
AB = RS
BC = ST
AC = RT
Given that the image formed by a reflection is congruent to the preimage, we have;
ΔABC ≅ ΔRST
∠ABC ≅ ∠RST
m∠ABC = m∠RST by the definition of congruency
∠BCA ≅ ∠STR
m∠BCA = m∠STR by the definition of congruency
∠BAC ≅ ∠SRT
m∠BAC = m∠SRT by the definition of congruency
Therefore, the true statements are;
- <u>AB = RS</u>; Image formed by rigid transformation
- <u>∠ABC ~ ∠RST</u>; Definition of similarity
- <u>ΔABC = ΔRST</u>; By definition of congruency
- <u>m∠BAC = m∠SRT</u>; by the definition of congruency
Learn more here:
brainly.com/question/11787764
82,300 because you need to round it to the 100 place
A) Gigabytes = x
B) 35+5x = 25+10x
10 = 5x
2 = x
C) After 2 gigabytes, the wireless services will cost the same ($45)
Using linear functions, it is found that Rowan and Kennedy will have read the same number of pages in 10 minutes.
What is a linear function?
- A linear function is modeled by:
In which:
- a is the slope, which is the rate of change, that is, by how much y changes when x changes by 1.
- b is the y-intercept, which is the value of y when x = 0.
For Rowan, we have that:
- He has already read 20 pages, hence the y-intercept is .
- He reads 1.5 pages per minute, hence the slope is
Then:
For Kennedy, we have that:
- He has already read 25 pages, hence the y-intercept is .
- He reads 1 page per minute, hence the slope is
Then:
They will have read the same number of pages after x minutes, for which:
Then:
To learn more about linear function, you can take a look at brainly.com/question/25823744
Answer:
x = 9
Step-by-step explanation:
Using the rule of exponents
× ⇔
Given
= × = =
Since the bases on both sides are common, then equate the exponents
x = 9