Answer:
See figure 1
Explanation:
On this case we have a <u>base</u> (methylamine) and an <u>acid</u> (2-methyl propanoic acid). When we have an acid and a base an <u>acid-base reaction </u>will take place, on this specific case we will produce an <u>ammonium carboxylate salt.</u>
Now the question is: <u>¿These compounds can react by a nucleophile acyl substitution reaction?</u> in other words <u>¿These compounds can produce an amide? </u>
Due to the nature of the compounds (base and acid), <u>the nucleophile</u> (methylamine) <u>doesn't have the ability to attack the carbon</u> of the carbonyl group due to his basicity. The methylamine will react with the acid-<u>producing a positive charge</u> on the nitrogen and with this charge, the methylamine <u>loses all his nucleophilicity.</u>
I hope it helps!
Answer:
Rusting of iron is one form of oxidation. Whether a substance oxidizes or corrodes describes a chemical property of matter.
HOPE THIS HELPS! ^_^
Explanation:
Answer:
30.3 g
Explanation:
At STP, 1 mol of any gas will occupy 22.4 L.
With the information above in mind, we <u>calculate how many moles are there in 32.0 L</u>:
- 32.0 L ÷ 22.4 L/mol = 1.43 mol
Then we <u>calculate how many moles would there be in 16.6 L</u>:
- 16.6 L ÷ 22.4 L/mol = 0.741 mol
The <u>difference in moles is</u>:
- 1.43 mol - 0.741 mol = 0.689 mol
Finally we <u>convert 0.689 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 0.689 mol * 44 g/mol = 30.3 g
There are three subatomic particles known: (1) electron which is found outside the nucleus of an atom and (2 and 3) protons and neutrons which are both inside the nucleus. As they are outside the nucleus, it is easier to transport electron than any other subatomic particle. Thus, atom and its ion differ in the number of electrons.