Answer:
9.6 moles O2
Explanation:
I'll assume it is 345 grams, not gratis, of water. Hydrogen's molar mass is 1.01, not 101.
The molar mass of water is 18.0 grams/mole.
Therefore: (345g)/(18.0 g/mole) = 19.17 or 19.2 moles water (3 sig figs).
The balanced equation states that: 2H20 ⇒ 2H2 +02
It promises that we'll get 1 mole of oxygen for every 2 moles of H2O, a molar ratio of 1/2.
get (1 mole O2/2 moles H2O)*(19.2 moles H2O) or 9.6 moles O2
Answer:
Explanation:
-log(3.5 * 10^-11)
= 10.4559
Be careful how you put this into your calculator. I had to use Exp to get it to work properly.
-log
(3.5 * 10 exp -11)
=
Are you sure it isn’t SO3+H2O = H2SO4 because that would be combination (synthesis) A+ B=AB
Or SO3 + H2SO4 = H2S2O7
Because that would also be synthesis
Simply put, Potential energy is the "build up". If I had a ball on the top a 5ft slide, it would have potential energy, as long as it hasn't slid down yet.
If I had another ball on a 10ft slide, it would have twice the potential energy the first ball had.
What comes next is kinetic energy, which is the energy used when the object is moving, like the ball as it goes down the slide. The faster it moves, the more kinetic energy.
Basically, <em>Potential</em> is the "build up" but it does not, I repeat does not move.
<em>Kinetic</em> energy is the use of the "build up" through movement.
<span>
</span>