To determine the fraction of carbon in morphine, we need to know the chemical formula of morphine. From my readings, the chemical formula would be <span>C17H19NO<span>3. We assume we have 1 g of this substance. Using the molar mass, we can calculate for the moles of morphine. Then, from the formula we relate the amount of carbon in every mole of morphine. Lastly, we multiply the molar mass of carbon to obtain the mass of carbon. We calculate as follows:
1 g </span></span> <span>C17H19NO<span>3 ( 1 mol / 285.34 g ) ( 17 mol C / 1 mol </span></span> <span>C17H19NO3</span>) ( 12.01 g C / 1 mol C) = 0.7155 g C
Fraction of carbon = 0.7155 g C / 1 g <span>C17H19NO<span>3 = 0.7155</span></span>
Answer:K subscript e q equals StartFraction StartBracket upper C upper O subscript 2 EndBracket StartBracket upper C a upper O EndBracket over StartBracket upper C a upper C upper O subscript 3 EndBracket EndFraction
Explanation: the answer has it's root in Law of mass action which states that; the rate of a chemical reaction is directly proportional to the product of the concentrations of the reactants raised to their respective stoichiometric coefficients.
OHHHHHHHHH MYYYYYYYYYYYYY GOOOOOOODDDDDDDDDDDD
Answer:

Explanation:
Hello,
In this case, since hydrochloric acid and barium hydroxide are in a 2:1 molar ratio, for the neutralization, the following moles equality must be obeyed:

In such a way, in terms of molarities and volumes, we can compute the required volume of hydrochloric acid as shown below:

Besr regards.
meat-eating carnivores have teeth for tearing and skulls capable of biting with great force, while the plant-eating herbivores have teeth and skulls equipped to grind tough vegetation