Answer:
No
Explanation:
<u>In order for glucose to be produced inside the mixture, photosynthesis has to take place</u>. The photosynthetic process requires a series of steps within an organelle called the <u>chloroplast</u>. The chloroplast contains the chlorophyll and other enzymes that are necessary for photosynthesis.
<em>Once the chlorophyll is isolated, it becomes separated from the enzymes necessary for the completion of photosynthesis, and the process is truncated. </em>When light is shined on the mixture, the majority would instead be lost as heat while some cause the chlorophyll molecules to glow.
Answer:
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Explanation:
The pH of a buffer solution is calculated using following relation

Thus the pH of buffer solution will be near to the pKa of the acid used in making the buffer solution.
The pKa value of HC₃H₅O₃ acid is more closer to required pH = 4 than CH₃NH₃⁺ acid.
pKa = -log [Ka]
For HC₃H₅O₃
pKa = 3.1
For CH₃NH₃⁺
pKa = 10.64
pKb = 14-10.64 = 3.36 [Thus the pKb of this acid is also near to required pH value)
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Half of the acid will get neutralized by the given base and thus will result in equal concentration of both the weak acid and the salt making the pH just equal to the pKa value.
9.0 grams will produce 11 L of hydrogen