1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
11

Plz help will mark as brainliest

Mathematics
1 answer:
Maru [420]3 years ago
3 0

Answer: the second option !!!

You might be interested in
Halle la ecuación del eje x y la ecuación del eje y, usando dos puntos que se encuentren sobre los mismos.
lisov135 [29]

Una linea recta ( cualquier eje coordenado es una línea recta) queda definida si se conocen dos puntos que están sobre ella.

Solución:

Ecuación del eje x      y = 0

Ecuación del eje y      x = 0

Para darle respuesta a la pregunta podemos seguir el siguiente procedimiento:

  • Escogemos dos puntos arbitrarios sobre el eje x, por ejemplo

P ( 2 ; 0 )  y Q ( 5 ; 0 )         ( todos los puntos sobre el eje x tienen coordenada y = 0.

Según la cual  m = (y₂ - y₁)/ ( x₂ - x₁ )    m = 0

  • Usamos la ecuación pendiente-Intercepto

y = m×x + b         donde m es la pendiente y b el intercepto con el eje y

y entonces tenemos:

  • m = 0    b ( 0 ; 0 )
  • Por sustitución en la ecuación pendiente-intercepto

y = 0

Procediendo de forma similar obtendremos la ecuación del eje y

P´( 0 ; 4 )     Q´( 0 : 8 ) entonces

y = m×x + b

En este caso, la pendiente no es definida ( tang 90° ) y b es de nuevo el punto b ( 0 ; 0).

A partir de  que todos y cada uno de los puntos sobre el eje y son  de valor 0 para x, concluímos que  ecuación del eje y es

x = 0

Enlaces de interés:brainly.com/question/21135669?

8 0
2 years ago
If Jessica split 75 pencils between 8 people in her class and kept the leftovers, how many pencils did each classmate get?
Nataly [62]

Answer: Each classmate got 9 pencils

Step-by-step explanation: if you divide 8 from 75, you get 9 pencils for each classmate and 3 for Jessica to keep.

6 0
3 years ago
Read 2 more answers
A high school principal wishes to estimate how well his students are doing in math. Using 40 randomly chosen tests, he finds tha
ollegr [7]

Answer:

99% confidence interval for the population proportion of passing test scores is [0.5986 , 0.9414].

Step-by-step explanation:

We are given that a high school principal wishes to estimate how well his students are doing in math.

Using 40 randomly chosen tests, he finds that 77% of them received a passing grade.

Firstly, the pivotal quantity for 99% confidence interval for the population proportion is given by;

                          P.Q. = \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }  ~ N(0,1)

where, \hat p = sample proportion of students received a passing grade = 77%

           n = sample of tests = 40

           p = population proportion

<em>Here for constructing 99% confidence interval we have used One-sample z proportion test statistics.</em>

So, 99% confidence interval for the population proportion, p is ;

P(-2.5758 < N(0,1) < 2.5758) = 0.99  {As the critical value of z at 0.5%

                                           level of significance are -2.5758 & 2.5758}  

P(-2.5758 < \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } } < 2.5758) = 0.99

P( -2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } < {\hat p-p} < 2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } ) = 0.99

P( \hat p-2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } < p < \hat p+2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } ) = 0.99

<u>99% confidence interval for p</u> = [\hat p-2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } , \hat p+2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }]

 = [ 0.77-2.5758 \times {\sqrt{\frac{0.77(1-0.77)}{40} } } , 0.77+2.5758 \times {\sqrt{\frac{0.77(1-0.77)}{40} } } ]

 = [0.5986 , 0.9414]

Therefore, 99% confidence interval for the population proportion of passing test scores is [0.5986 , 0.9414].

Lower bound of interval = 0.5986

Upper bound of interval = 0.9414

6 0
3 years ago
The newly elected president needs to decide the remaining 5 spots available in the cabinet he/she is appointing. If there are 15
skad [1K]

Answer: There are 360360 ways to appoint the members of the cabinet.

Step-by-step explanation:

Since we have given that

Number of eligible candidates = 15

Number of spots available = 5

We need to find the number of different ways the members can be appointed where rank matters

For this we will use "Permutations":

So, the required number of different ways in choosing the members for appointment is given by

^{15}P_5=360360

Hence, there are 360360 ways to appoint the members of the cabinet.

7 0
3 years ago
HELP Luna observed that in the last 12 issues of Rise Over Run Weekly, 384 of the 960 pages contained an advertisement.
Veseljchak [2.6K]
Well, 12 issues end up as 960 pages total

so... if in 960 pages, 384 are ads, what about 80 pages?

well \bf \begin{array}{ccllll}&#10;pages&ads\\&#10;\textendash\textendash\textendash\textendash\textendash\textendash&\textendash\textendash\textendash\textendash\textendash\textendash\\&#10;960&384\\&#10;80&x&#10;\end{array}\implies \cfrac{960}{80}=\cfrac{384}{x}

solve for "x"
7 0
3 years ago
Read 2 more answers
Other questions:
  • I really need the answer for this problem
    7·1 answer
  • What is Y minus negative 5
    14·2 answers
  • is this a relation or function ? what is the domain and range ? what is the input and output ? is it discrete or continuous ? ​
    12·1 answer
  • 5-12 - _ + 5/4 = 2/3
    14·2 answers
  • (|5 - 3| + 1)/(2 + 5 * 4)
    6·2 answers
  • Need help with these last two questions, tysm if you do :D
    13·1 answer
  • Help me, please!!!!! CORRECT ANSWER GETS BRAINLIEST!!!!!!
    7·1 answer
  • Approximate the length of the hypotenuse to the nearest tenth without adding a calculator
    8·1 answer
  • Why is taking a census better than taking samples in a survey?
    12·2 answers
  • Twice a number is 46 less than 4 times the number. Find the number.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!