1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
3 years ago
5

The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200 K and 400 K,

respectively. For each case, evaluate the net power developed by the cycle, in kW, and the thermal efficiency. Also in each case apply the equation below on a time-rate basis to determine whether the cycle operates reversibly, operates irreversibly, or is impossible.
(a) Qh(dot)=600 kW, Qc(dot)=400 kW
(b) Qh(dot)=600 kW, Qc(dot)=0 kW
(c) Qh(dot)=600 kW, Qc(dot)=200 kW

∮ (δQ/T)_b = -σ_cycle
Engineering
1 answer:
melomori [17]3 years ago
3 0

Answer:

(a) Qh(dot)=600 kW, Qc(dot)=400 kW  is an irreversible process.

(b) Qh(dot)=600 kW, Qc(dot)=0 kW  is an impossible process.

(c) Qh(dot)=600 kW, Qc(dot)=200 kW  is a reversible process.

Explanation:

T(hot) = 1200k, T(cold) = 400

efficiency n = (Th - Tc ) / Tc

n = (1200 - 400) / 1200 = 0.667 (this will be the comparison base)

(a)

Qh = 600 kW, Qc = 400 kW

n = (Qh - Qc) / Qh ⇒ (600 - 400) / 600

n = 0.33

0.33 is less than efficiency value from temperature 0.67

∴ it is irreversible process

(b)

Qh = 600 kW, Qc = 0

n = (Qh - Qc) / Qh ⇒ (600 - 0) / 600 = 1

efficiency in any power cycle can never be equal to one.

∴ it is an impossible process.

(c)

Qh = 600 kW, Qc = 200 kW

n = (Qh - Qc) / Qh = (600 - 200) / 600

n = 0.67 (it is equal to efficiency value from temperature)

∴ it is a reversible process

You might be interested in
Calculate the reluctance of a 4-meter long toroidal coil made of low-carbon steel with an inner radius of 1.75 cm and an outer r
My name is Ann [436]

Answer:

R = 31.9 x 10^(6) At/Wb

So option A is correct

Explanation:

Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A

Thus; R = L/μA,

Now from the question,

L = 4m

r_1 = 1.75cm = 0.0175m

r_2 = 2.2cm = 0.022m

So Area will be A_2 - A_1

Thus = π(r_2)² - π(r_1)²

A = π(0.0225)² - π(0.0175)²

A = π[0.0002]

A = 6.28 x 10^(-4) m²

We are given that;

L = 4m

μ_steel = 2 x 10^(-4) Wb/At - m

Thus, reluctance is calculated as;

R = 4/(2 x 10^(-4) x 6.28x 10^(-4))

R = 0.319 x 10^(8) At/Wb

R = 31.9 x 10^(6) At/Wb

8 0
4 years ago
Time management is a learned behavior.<br> True<br> False
larisa [96]

Answer:

true

Explanation:

3 0
3 years ago
Read 2 more answers
How many people made machines
olganol [36]

Answer:

The total number of people whom have made machines is not a recorded figure? Need to be more specific :/

Explanation:

Sorry not very helpful, your question is REALLY broad

3 0
3 years ago
Read 2 more answers
The pump of a water distribution system is powered by a 6-kW electric motor whose efficiency is 95 percent. The water flow rate
Sonja [21]

Answer:

a) Mechanical efficiency (\varepsilon)=63.15%  b) Temperature rise= 0.028ºC

Explanation:

For the item a) you have to define the mechanical power introduced (Wmec) to the system and the power transferred to the water (Pw).

The power input (electric motor) is equal to the motor power multiplied by the efficiency. Thus, Wmec=0.95*6kW=5.7 kW.

Then, the power transferred (Pw) to the fluid is equal to the flow rate (Q) multiplied by the pressure jump \Delta P. So P_W = Q*\Delta P=0.018m^3/s * 200x10^3 Pa=3600W.

The efficiency is defined as the ratio between the output energy and the input energy. Then, the mechanical efficiency is \varepsilon=3.6kW/5.7kW=0.6315=63.15\%

For the b) item you have to consider that the inefficiency goes to the fluid as heat. So it is necessary to use the equation of the heat capacity but in a "flux" way. Calling <em>H</em> to the heat transfered to the fluid, the specif heat of the water and \rho the density of the water:

[tex]H=(5.7-3.6) kW=\rho*Q*c*\Delta T=1000kg/m^3*0.018m^3/s*4186J/(kg \ºC)*\Delta T[/tex]

Finally, the temperature rise is:

\Delta T=2100/75348 \ºC=0.028 \ºC

7 0
3 years ago
Name safety hazards that should be included in the design of a school
dem82 [27]

Answer:

Environmental

Explanation:

weather , noise, heat ect

7 0
3 years ago
Other questions:
  • Technician A says that you don’t need to use an exhaust extraction system when working on vehicles equipped with a catalytic con
    9·1 answer
  • computer language C++ (Connect 4 game)( this is all the info that was givin no input or solution) I used the most recent version
    6·1 answer
  • Consider 1.0 kg of austenite containing 1.15 wt% C, cooled to below 727C (1341F). (a) What is the proeutectoid phase? (b) How
    14·1 answer
  • A 350 m^3 retention pond that holds rainwater from a shopping mall is empty at the beginning of a rainstorm. The flow rate out o
    7·1 answer
  • How many sets of equations (V and M equations) would you need to describe shear and moment as functions of x for this beam? In o
    12·1 answer
  • Write a program that asks the user to input a vector of integers of arbitrary length. Then, using a for-end loop the program exa
    13·1 answer
  • The products of combustion from a burner are routed to an industrial application through a thin-walled metallic duct of diameter
    11·1 answer
  • Which of these are an ethical issue
    14·1 answer
  • Underground water is to be pumped by a 78% efficient 5- kW submerged pump to a pool whose free surface is 30 m above the undergr
    10·1 answer
  • What is the tolerance for number 4?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!