- Angle (θ) = 60°
- Force (F) = 20 N
- Distance (s) = 200 m
- Therefore, work done
- = Fs Cos θ
- = (20 × 200 × Cos 60°) J
- = (20 × 200 × 1/2) J
- = (20 × 100) J
- = 2000 J
<u>Answer</u><u>:</u>
<u>2</u><u>0</u><u>0</u><u>0</u><u> </u><u>J</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
36.87 km/h
Explanation:
Convert all the units in SI system
1 mile = 1609.34 m
d1 = 6 mi = 9656.04 m
t1 = 15 min = 15 x 60 = 900 s
d2 = 3 mi = 4828.02 m
t2 = 10 min = 10 x 60 = 600 s
d3 = 1 mi = 1609.34 m
t3 = 2 min = 2 x 60 = 120 s
d4 = 0.5 mi = 804.67 m
t4 = 0.5 min = 0.5 x 60 = 30 s
Total distance, d = d1 + d2 + d3 + d4
d = 9656.04 + 4828.02 + 1609.34 + 804.67 = 16898.07 m = 16.898 km
total time, t = t1 + t2 + t3 + t4
t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h
The ratio of the total distance covered to the total time taken is called average speed.
Average speed = 16.898 / 0.4583 = 36.87 km/h
Answer:
8050 J
Explanation:
Given:
r = 4.6 m
I = 200 kg m²
F = 26.0 N
t = 15.0 s
First, find the angular acceleration.
∑τ = Iα
Fr = Iα
α = Fr / I
α = (26.0 N) (4.6 m) / (200 kg m²)
α = 0.598 rad/s²
Now you can find the final angular velocity, then use that to find the rotational energy:
ω = αt
ω = (0.598 rad/s²) (15.0 s)
ω = 8.97 rad/s
W = ½ I ω²
W = ½ (200 kg m²) (8.97 rad/s)²
W = 8050 J
Or you can find the angular displacement and find the work done that way:
θ = θ₀ + ω₀ t + ½ αt²
θ = ½ (0.598 rad/s²) (15.0 s)²
θ = 67.3 rad
W = τθ
W = Frθ
W = (26.0 N) (4.6 m) (67.3 rad)
W = 8050 J
Answer:
3.7 N/kg
Explanation:
The gravitational strength refers to the amount of gravity acting per unit mass. Hence in this case,
Gravitational Strength = Weight / Mass
= 370 / 100
= <u>3</u><u>.</u><u>7</u><u>N</u><u>/</u><u>k</u><u>g</u>