Before we go through the questions, we need to calculate and determine some values first.
r = 11.5 m
<span>m = 280 kg </span>
<span>Centripetal force = m x v^2/r = 280 x (17.1^2/11.5) = 7119.55 N
</span>
1) What is the magnitude of the normal force on the care when it is at the bottom of the circle.
<span>Centripetal force + mg = 7119.55 + (280 x 9.8) = 9863.55 N </span>
<span>2) What is the magnitude of the normal force on the car when it is at the side of the circle. </span>
<span>Centripetal force = 7119.55 N </span>
<span>3) What is the magnitude of the normal force on the car when it is at the top of the circle. </span>
<span>Centripetal force - mg = 7119.55 - (280 x 9.8) = 4375.55 N </span>
<span>4) What is the minimum speed of the car so that it stays in contact with the track at the top of the loop. </span>
√<span>(gr) </span>
√<span>(9.8 x 11.5) = 10.62 m/s</span>
Answer:
Same
Explanation:
While moving through a magnetic field in a direction perpendicular to a B-field, a continuous force experienced by a charged particle. If this magnetic field remains uniform, the force exerted also remains same and hence the velocity with which the particle is moving remains same. However, the particle is forced to move on a curved path until it forms a complete circle.
Hence, the kinetic energy remains the same because the speed is same
The speed of sound at sea level is 340.29 m/s (meters per seconds).
Answer:
Explanation:
Given data
time=0.530 h
Average velocity Vavg=19.0 km/s
To find
Displacement Δx
Solution
The Formula for average velocity is given as