Answer:
99.065% probability that at least two of the three will be available at any given time.
Step-by-step explanation:
We have these following probabilities:
99% probability of the first workstation being available
95% probability of the second workstation being available
85% probability of the third workstation being avaiable
Two being available:
We can have three outcomes
First and second available, third not. So
0.99*0.95*0.15 = 0.141075
First and third available, second not. So
0.99*0.05*0.85 = 0.042075
Second and third available, first not. So
0.01*0.95*0.85 = 0.008075
Adding them all
P(2) = 0.141075 + 0.042075 + 0.008075 = 0.191225
Three being available:
P(3) = 0.99*0.95*0.85 = 0.799425
What is the probability that at least two of the three will be available at any given time?
P = P(2) + P(3) = 0.191225 + 0.799425 = 0.99065
99.065% probability that at least two of the three will be available at any given time.