1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
3 years ago
5

Determina el termino que hace falta en cada trinomio, de modo que sea trinomio cuadrado perfecto. luego, factorizalo

Mathematics
1 answer:
IgorLugansk [536]3 years ago
3 0

Answer:

1) El término faltante es b^{2} = 9. La forma factorizada del polinomio es (\pm 3 \cdot n^{3} \mp 3)^{2}, 2) El término faltante es \pm 10^{\frac{3}{2} }\cdot x^{\frac{5}{2}\cdot n }. La forma factorizada puede ser (\pm \sqrt{10} \cdot x^{\frac{5}{2}\cdot n} \pm 5)^{2} o (\pm \sqrt{10} \cdot x^{\frac{5}{2}\cdot n} \mp 5)^{2}, 3) El término faltante es \frac{1}{4} \cdot y ^{2\cdot n}. La forma factorizada es (\pm 3 \cdot x^{n} \pm \frac{1}{2}\cdot y^{n})^{2}.

Step-by-step explanation:

(This exercise is presented in Spanish and therefore explanation will be held in such language)

Un trinomio cuadrado perfecto es una expresión algebraica que responde a la siguiente identidad:

(a + b)^{2} = a^{2} + 2 \cdot a \cdot b + b^{2}

Este ejercicio pide completar cada trinomio cuadrado perfecto con el componente faltante:

1) 9\cdot n^{6} - 18 \cdot n^{3}...

El término central implica el producto

a = \pm 3\cdot n^{3}

2\cdot a \cdot b = - 18 \cdot n^{3}

2\cdot (\pm 3\cdot n^{3})\cdot b = -18\cdot n^{3}

\pm 6\cdot n^{3}\cdot b = -18 \cdot n^{3}

b = \mp \frac{18\cdot n^{3}}{6\cdot n^{3}}

b = \mp 3

El término faltante es b^{2} = 9. La forma factorizada del polinomio es (\pm 3 \cdot n^{3} \mp 3)^{2}.

2) 10\cdot x^{5\cdot n} + ... + 25

a^{2} = 10\cdot x^{5\cdot n}

a_{1} = +\sqrt{10}\cdot x^{\frac{5}{2}\cdot n } o a_{2} = -\sqrt{10}\cdot x^{\frac{5}{2}\cdot n }

b^{2} = 25

b_{1} = 5 o b_{2} = -5

Existen dos posibles soluciones (y cuatro combinaciones posibles):

Posibilidad 1:

2\cdot a_{1}\cdot b_{1} =  2\cdot (\sqrt{10}\cdot x^{\frac{5}{2}\cdot n }) \cdot  (5)

2\cdot a_{1}\cdot b_{1} = 10^{\frac{3}{2} }\cdot x^{\frac{5}{2}\cdot n }

Posibilidad 2:

2\cdot a_{2}\cdot b_{1} =  2\cdot (-\sqrt{10}\cdot x^{\frac{5}{2}\cdot n }) \cdot  (5)

2\cdot a_{1}\cdot b_{1} = -10^{\frac{3}{2} }\cdot x^{\frac{5}{2}\cdot n }

El término faltante es \pm 10^{\frac{3}{2} }\cdot x^{\frac{5}{2}\cdot n }. La forma factorizada puede ser (\pm \sqrt{10} \cdot x^{\frac{5}{2}\cdot n} \pm 5)^{2} o (\pm \sqrt{10} \cdot x^{\frac{5}{2}\cdot n} \mp 5)^{2}.

3) 9\cdot x^{2\cdot n} + 3\cdot x^{n}\cdot y^{n} +...

a = \pm 3\cdot x^{n}

2\cdot a \cdot b = 3\cdot x^{n}\cdot y^{n}

2\cdot (\pm 3 \cdot x^{n})\cdot b = 3 \cdot x^{n}\cdot y^{n}

\pm 6 \cdot x^{n}\cdot b = 3 \cdot x^{n}\cdot y^{n}

b = \pm \frac{3\cdot x^{n}\cdot y^{n}}{6\cdot x^{n}}

b = \pm \frac{1}{2}\cdot y^{n}

b^{2} = \frac{1}{4}\cdot y^{2\cdot n}

El término faltante es \frac{1}{4} \cdot y ^{2\cdot n}. La forma factorizada es (\pm 3 \cdot x^{n} \pm \frac{1}{2}\cdot y^{n})^{2}.

You might be interested in
The probability of getting a head is 0.3 find the probability of getting a tail
ratelena [41]

Answer: 0.7


Step-by-step explanation:

p(tail) + p(head) = 1

p(tail) = 1 - p(head)

p(tail) = 1 -0.3

p(tail) = 0.7





mark the brainliest plzz



6 0
3 years ago
N.6 Properties of parallelograms
PolarNik [594]

Answer:

J=63

Step-by-step explanation:

3b+27=2b+57

subtract 27 from both sides

3b=2b+30

subtract 2b from both sides

b=30

K+J=180

substitute the value of b into K

2(30)+57+J=180

117+J=180

subtract 117 from both sides

J=63

4 0
3 years ago
If a cyclist rides at a constant rate of 24 miles per hour, how long would it take the cyclist to ride 120 miles?
Lynna [10]
I not sure but I think it’s 1440
5 0
3 years ago
Read 2 more answers
Rewrite using a single exponent:<br><br> (4^6)^6
SVETLANKA909090 [29]

(4)^36

Multiply the exponent 6 by 6 to get the new exponent of 36

7 0
3 years ago
Why the derivative of (x^2/a^2) = (2x/a^2)? ​
Neko [114]

I assume you're referring to a function,

f(x) = \dfrac{x^2}{a^2}

where <em>a</em> is some unknown constant. By definition of the derivative,

\displaystyle f'(x) = \lim_{h\to0}{f(x+h)-f(x)}h

Then

\displaystyle f'(x) = \lim_{h\to0}{\frac{(x+h)^2}{a^2}-\frac{x^2}{a^2}}h \\\\ f'(x) = \frac1{a^2} \lim_{h\to0}{(x+h)^2-x^2}h \\\\ f'(x) = \frac1{a^2} \lim_{h\to0}{(x^2+2xh+h^2)-x^2}h \\\\ f'(x) = \frac1{a^2} \lim_{h\to0}{2xh+h^2}h \\\\ f'(x) = \frac1{a^2} \lim_{h\to0}(2x+h) = \boxed{\frac{2x}{a^2}}

8 0
3 years ago
Other questions:
  • Find the exact values of the remaining five trigonometric functions of theta
    11·1 answer
  • Help!! is it $486?
    9·2 answers
  • The product of a number four is at most negative 10
    11·1 answer
  • Write two subtraction equations to show how to find 15-7
    9·1 answer
  • Randy wants to purchase a video game console that costs $180.
    13·2 answers
  • Which graph shows the line y = x + 1?
    5·2 answers
  • Completa los datos que hacen folta en la tabla pitagoricacolorea de rojo los multiplos de 8 , azul los 5 ,verde los de 10 y de a
    13·1 answer
  • The next model of a sports car will cost 5.1% more than the current model. The current model costs $45,000. How much will the pr
    15·1 answer
  • Anybody how to do this?​
    13·1 answer
  • If (2 +3i)^2 + (2 - 3i)^2 = a + bia =b=
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!