Answer:
x - 6
Step-by-step explanation:
I'm showing you how I solved it in the picture that I have included.
Tan (Ф/2)=⁺₋√[(1-cosФ)/(1+cosФ)]
if π<Ф<3π/2;
then, Where is Ф/2??
π/2<Ф/2<3π/4; therefore Ф/2 is in the second quadrant; then tan (Ф/2) will have a negative value.
tan(Ф/2)=-√[(1-cosФ)/(1+cosФ)]
Now, we have to find the value of cos Ф.
tan (Ф)=4/3
1+tan²Ф=sec²Ф
1+(4/3)²=sec²Ф
sec²Ф=1+16/9
sec²Ф=(9+16)/9
sec²Ф=25/9
sec Ф=-√(25/9) (sec²Ф will have a negative value, because Ф is in the sec Ф=-5/3 third quadrant).
cos Ф=1/sec Ф
cos Ф=1/(-5/3)
cos Ф=-3/5
Therefore:
tan(Ф/2)=-√[(1-cosФ)/(1+cosФ)]
tan(Ф/2)=-√[(1+3/5)/(1-3/5)]
tan(Ф/2)=-√[(8/5)/(2/5)]
tan(Ф/2)=-√4
tan(Ф/2)=-2
Answer: tan (Ф/2)=-2; when tan (Ф)=4/3
Answer:
10cos(5x)sin(10x) = 5[sin (15x) + sin (5x)]
Step-by-step explanation:
In this question, we are tasked with writing the product as a sum.
To do this, we shall be using the sum to product formula below;
cosαsinβ = 1/2[ sin(α + β) - sin(α - β)]
From the question, we can say α= 5x and β= 10x
Plugging these values into the equation, we have
10cos(5x)sin(10x) = (10) × 1/2[sin (5x + 10x) - sin(5x - 10x)]
= 5[sin (15x) - sin (-5x)]
We apply odd identity i.e sin(-x) = -sinx
Thus applying same to sin(-5x)
sin(-5x) = -sin(5x)
Thus;
5[sin (15x) - sin (-5x)] = 5[sin (15x) -(-sin(5x))]
= 5[sin (15x) + sin (5x)]
Hence, 10cos(5x)sin(10x) = 5[sin (15x) + sin (5x)]
Sorry but What information?
Answer:
I may be wrong, but I learned that the first slot would be "terms". 4:3 would be an example of a ratio so it couldn't be ratio and a difference is subtracting.
The second slot would not be a geometric sequence because it is not correctly placed on the number line.
Therefore, the answers would be "terms" and "is not"