1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dusya [7]
4 years ago
8

FIND THE VOLUME OF THE CONE

Mathematics
2 answers:
sukhopar [10]4 years ago
3 0

Answer:

V=130.83

Step-by-step explanation:

V=pi*5^2*5/3=125pi/3=130.83

NeX [460]4 years ago
3 0
V=130.83
Hope this helps
You might be interested in
Find the degree of the polynomial: w7 y3
siniylev [52]

Answer:

polynomial of degree 10

Step-by-step explanation:

The degree of the polynomial is the sum of the exponents, that is

w^{7}y³ → has degree 7 + 3 = 10

5 0
3 years ago
A(1)=-13<br> A(n)=a(n-1)+4<br> Find the 2nd term
Agata [3.3K]

Answer:

- 9

Step-by-step explanation:

Substitute n = 2 into the recursive formula, that is

A(2) = A(1) + 4 = - 13 + 4 = - 9

4 0
4 years ago
If Jeremy can buy 12 donuts for $5.76, how much will 18 donuts cost at the same time
Tasya [4]
The answer is 103.68
8 0
4 years ago
Read 2 more answers
A certain quantity grows exponentially over time. The initial quantity at t = 0 is 2,000. The quantity grows by a factor of 20%.
katovenus [111]
The quantity at t=8 is $8,599.63
8 0
4 years ago
Read 2 more answers
Determine en donde la funcion dada es creciente,concava hacia riba y concava hacia abajo. y= x3–3x–1
Minchanka [31]

Answer:

Es creciente en los siguientes intervalos: [-\infty,-1] U [1,\infty]

Es concavo hacia abajo en el intervalo: [-\infty,0)

Es concavo hacia arriba en el intervalo: (0,\infty]

Step-by-step explanation:

Sea la función:

f(x)=x^{3}-3x-1

Para determinar el intervalo de crecimeinto debes determinar la primer derivada de la función (f'(x)). El intervalo donde f'(x) > 0 es creciente.

La derivada de f(x) es:

f'(x)=3x^{2}-3

Entonces es creciente en los siguientes intervalos:

[-\infty,-1] U [1,\infty]    

Ahora para determinar la concavidad debemos determinar la segunda derivada de la función (f''(x)). Si f''(x) > 0 la función es concava hacia arriba, si f''(x) < 0 la funcion es concava hacia abajo.

La segunda derivada de f(x) es:

f''(x)=6x        

Por lo tanto:

Es concavo hacia abajo en el intervalo: [-\infty,0)

Es concavo hacia arriba en el intervalo: (0,\infty]

Espero te haya ayudado!

8 0
3 years ago
Other questions:
  • Question in picture. Thanks!
    14·1 answer
  • Why is a square root called a squared root
    6·2 answers
  • A "planet transit" is a rare celestial event in which a planet appears to cross in front of its star as seen from Earth. The pla
    10·1 answer
  • Is 9.36 less. than. 9.359
    10·2 answers
  • Find the distance between the points given.<br><br> (0, -6) and (9, 6)
    10·2 answers
  • A plumber chargers a fee of $75 plus $30 per hour on the job. Make a table of values for the total charge depending on the numbe
    8·1 answer
  • A boat travels 52 miles upstream in the same amount of time that it travels down stream 85 miles. If the stream is moving at a r
    8·1 answer
  • 20) Write a division number story with an answer of 1/4.<br><br> Be sure to ask a question.
    15·1 answer
  • Multiply. (3x²+4y+2)​
    11·1 answer
  • Please help I will give a brainless or brainly
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!