1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kaheart [24]
2 years ago
8

Which statement is true?

Mathematics
2 answers:
Len [333]2 years ago
6 0

Answer:

C. 5x and x are like terms.

Step-by-step explanation:

Like terms have the same degree of the variable

5x and x are like terms because both have x to the power 1

skad [1K]2 years ago
5 0

Answer:

C. 5x and x are like terms.

Step-by-step explanation:

All variables are all " x "

You might be interested in
A student says that the graph of the equation y = 3(x + 8) is the same as the graph of y = 3x, only translated upwards by 8 unit
Wittaler [7]

Given:

A student says that the graph of the equation y = 3(x + 8) is the same as the graph of y = 3x, only translated upwards by 8 units.

To find:

Whether the student is correct or not.

Solution:

Initial equation is

y=3x

f(x)=3x

Equation of after transformation is

y=3(x+8)

g(x)=3(x+8)

Now,

g(x)=f(x+8)      ...(i)

The translation is defined as

g(x)=f(x+a)+b        ...(ii)

Where, a is horizontal shift and b is vertical shift.

If a>0, then the graph shifts a units left and if a<0, then the graph shifts a units right.

If b>0, then the graph shifts b units up and if b<0, then the graph shifts b units down.

From (i) and (ii), we get

a=8\text{ and }b=0

Therefore, the graph of y=3x translated left by 8 units. Hence, the student is wrong.

8 0
2 years ago
8x + 7 equals -9 solve for x
Montano1993 [528]
The answer to this equation is
x= (1/4)
8 0
3 years ago
I need help with a problem with solving by square roots in quadratic equation.
Readme [11.4K]

To solve for x, first, we add 3 to the given equation:

\begin{gathered} 2(x+5)^2-3+3=44+3, \\ 2(x+5)^2=47. \end{gathered}

Dividing by 2, we get:

(x+5)^2=\frac{47}{2}.

Therefore:

x+5=\pm\sqrt{\frac{47}{2}}.

Finally, subtracting 5 we get:

x=\pm\sqrt{\frac{47}{2}}-5.

Answer:

x=\operatorname{\pm}\sqrt{\frac{47}{2}}-5.

4 0
1 year ago
What was the total production of gasoline and kerosene combined (in Barrels)
Elina [12.6K]

The amount of kerosene and gasoline produced is an illustration of equations.

<em>44.4 million barrels of gasoline and kerosene are produced</em>

Let

<em />x \to<em> Proportion of kerosene</em>

<em />y \to<em>  Proportion of Gasoline</em>

<em />

So:

x = 40\%

y = 34\%

Total = 60\ million ---- total barrels produced

The amount of Kerosene produced is:

Kerosene =x \times Total

Kerosene =40\% \times 60\ million

Kerosene = 24\ million

The amount of Gasoline produced is:

Gasoline  =y \times Total

Gasoline  =34\% \times 60\ million

Gasoline  =20.4\ million

So, the total production of both is:

Total = Kerosene + Gasolene

Total = 24\ million + 20.4\ million

Total = 44.4 million

<em>Hence, 44.4 million barrels of gasoline and kerosene are produced</em>

Read more about equations at:

brainly.com/question/21105092

8 0
2 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
Other questions:
  • 8 - (-5) + (-8)<br> Can someone do a step by step explanation to do this problem? Please
    8·2 answers
  • Write two properties of a transversal to two parallel lines. *
    8·1 answer
  • Prove that: cos^2 (45+A)+cos^2 (45-A)=1​
    11·2 answers
  • Which of the following correctly shows the quotient of 80 divided by 5?
    11·2 answers
  • Help plz:)))I’ll mark u Brainliest
    9·2 answers
  • Heeeeeelp plssssssss
    15·2 answers
  • Write whether the scenario represents a linear function or an exponential function? Explain why.
    15·1 answer
  • Quickkk solve by graphing u can use a graph I just need the work
    9·1 answer
  • What is the quotient of 1414 divided by 32 and written in a mixed fraction
    6·1 answer
  • 1. What is being represented by the input in this function?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!