1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ikadub [295]
3 years ago
13

Slope Criteria for Parallel and Perpendicular Lines: Mastery Test

Mathematics
1 answer:
zalisa [80]3 years ago
6 0

Answer:

Each of the points and the y-intercept of their perpendicular bisectors

1) A(-4,5) and B(8,9), y-intercept = 13

2) A(2, 4) and B(-8,6), y-intercept = 20

3) A(5, 4) and B(7.2), y-intercept = -3

4) A(2, 9) and B(-4.3), y-intercept = 5

5) A(3.-2) and B(9.-12), y-intercept = -10.6

6) A(4, 10) and B(8, 12), y-intercept = 23

Arranged in order of increasing y-intercepts of their perpendicular bisectors, from the smallest to largest y-intercept

5) A(3.-2) and B(9.-12), y-intercept = -10.6

3) A(5, 4) and B(7.2), y-intercept = -3

4) A(2, 9) and B(-4.3), y-intercept = 5

1) A(-4,5) and B(8,9), y-intercept = 13

2) A(2, 4) and B(-8,6), y-intercept = 20

6) A(4, 10) and B(8, 12), y-intercept = 23

Step-by-step explanation:

The slopes of two perpendicular lines are related as thus

m₁m₂ = -1

Hence, for each of the two Points given, the slope of the perpendicular bisector is

m₂ = -(1/m₁)

But the slope of each of the lines connecting the two points is given as

m = (y₁ - y₂)/(x₁ - x₂)

And the coordinates of the midpoint, that the perpendicular bisector passes through is given as

(x, y) = {[(x₁ + x₂)/2], [(y₁ + y₂)/2]}

And from the slope of the perpendicular bisector and the coordinates of the midpoint of each question point, we can obtain the equation of the line that is the perpendicular bisector. And easily obtain the y-intercept from that.

Taking the points, one at time

1) A(-4,5) and B(8,9)

Slope of the line connecting the two points = m₁ = (9 - 5)/(8 - -4) = (4/12) = (1/3)

Slope of the perpendicular bisector

= m₂ = -1 ÷ (1/3) = -3

The midpoint of the two points is given as

= [(-4 + 8)/2, (9 + 5)/2]

= (2, 7)

The equation of the perpendicular bisector is then given as the equation of line with slope -3 and passes through (2, 7)

y = mx + c

7 = (-3×2) + c

7 = -6 + c

c = 7 + 6 = 13

y = -3x + 13

y-intercept = 13

2) A(2, 4) and B(-8,6)

Slope of the line connecting the two points = m₁ = (6 - 4)/(-8 - 2) = -(2/10) = -(1/5)

Slope of the perpendicular bisector

= m₂ = -1 ÷ -(1/5) = 5

The midpoint of the two points is given as

= [(2 + -8)/2, (4 + 6)/2]

= (-3, 5)

The equation of the perpendicular bisector is then given as the equation of line with slope 5 and passes through (-3, 5)

y = mx + c

5 = (5×-3) + c

5 = -15 + c

c = 5 + 15 = 20

y = 5x + 20

y-intercept = 20

3) A(5, 4) and B(7.2)

Slope of the line connecting the two points = m₁ = (2 - 4)/(7 - 5) = -(2/2) = -1

Slope of the perpendicular bisector

= m₂ = -1 ÷ -1 = 1

The midpoint of the two points is given as

= [(5 + 7)/2, (4 + 2)/2]

= (6, 3)

The equation of the perpendicular bisector is then given as the equation of line with slope 1 and passes through (6, 3)

y = mx + c

3 = (1×6) + c

3 = 6 + c

c = 3 - 6 = -3

y = x - 3

y-intercept = -3

4) A(2, 9) and B(-4.3)

Slope of the line connecting the two points = m₁ = (3 - 9)/(-4 - 2) = (-6/-6) = 1

Slope of the perpendicular bisector

= m₂ = -1 ÷ 1 = -1

The midpoint of the two points is given as

= [(2 + -4)/2, (9 + 3)/2]

= (-1, 6)

The equation of the perpendicular bisector is then given as the equation of line with slope -1 and passes through (-1, 6)

y = mx + c

6 = (-1×-1) + c

6 = 1 + c

c = 6 - 1 = 5

y = -x + 5

y-intercept = 5

5) A(3.-2) and B(9.-12)

Slope of the line connecting the two points = m₁ = (-12 - -2)/(9 - 3) = (-10/6) = -(5/3)

Slope of the perpendicular bisector

= m₂ = -1 ÷ (-5/3) = (3/5)

The midpoint of the two points is given as

= [(3 + 9)/2, (-2 + -12)/2]

= (6, -7)

The equation of the perpendicular bisector is then given as the equation of line with slope 3/5 and passes through (6, -7)

y = mx + c

-7 = [(3/5)×6] + c

-7 = 3.6 + c

c = -7 + -3.6 = -10.6

y = 3x/5 - 10.6

y-intercept = -10.6

6) A(4, 10) and B(8, 12)

Slope of the line connecting the two points = m₁ = (12 - 10)/(8 - 4) = (2/4) = (1/2)

Slope of the perpendicular bisector

= m₂ = -1 ÷ (1/2) = -2

The midpoint of the two points is given as

= [(4 + 8)/2, (10 + 12)/2]

= (6, 11)

The equation of the perpendicular bisector is then given as the equation of line with slope -2 and passes through (6, 11)

y = mx + c

11 = (-2×6) + c

11 = -12 + c

c = 11 + 12 = 23

y = -2x + 23

y-intercept = 23

1) A(-4,5) and B(8,9), y-intercept = 13

2) A(2, 4) and B(-8,6), y-intercept = 20

3) A(5, 4) and B(7.2), y-intercept = -3

4) A(2, 9) and B(-4.3), y-intercept = 5

5) A(3.-2) and B(9.-12), y-intercept = -10.6

6) A(4, 10) and B(8, 12), y-intercept = 23

Hope this Helps!!!

You might be interested in
Simplify the expression -3z(1.8z-2.2).
alexdok [17]

Answer:

- 5.4z {}^{2}  + 6.6z

Step-by-step explanation:

Given:

-3z(1.8z-2.2)

Solution:

Applying Distributive property,we obtain

  • (−3z)(1.8z)+(−3z)(−2.2)

Simplifying using PEMDAS:

  • - 5.4z {}^{2}  + 6.6z

Done!

5 0
2 years ago
Convert equation from slope intercept form to standard form y=-7/3x+1
Andrews [41]

Answer:

7x + 3y = 3

7x + 3y = 3

7x + 3y = 3

4 0
3 years ago
if two straight lines intersect each other in such a way that one of the angles formed measures 90 degree show that each of the
Hitman42 [59]
I hope this helps in answering your question! If you have any inquiries to the solution, feel free to leave a comment!

6 0
3 years ago
Read 2 more answers
A number that when multiplied equals 576 but when added equals 48
Flauer [41]
...... 24 is the answer
5 0
3 years ago
Read 2 more answers
G(x) = 3x + 1; Find g(-8)
gregori [183]

Answer:

g(-8) = -23

Step-by-step explanation:

g(x) = 3x + 1    <em>Plug in g(-8)</em>

g(-8) = 3(-8) + 1  <em>Multiply 3 by -8</em>

g(-8) = -24 + 1   <em>Add 1 to -24</em>

g(-8) = -23

5 0
3 years ago
Read 2 more answers
Other questions:
  • An employee makes a gross salary of 48,000 per year 15% of that money goes toward taxes of the employee invest 20% of his gross
    8·2 answers
  • Please I need help I been stuck on this problem for 40 minutes
    7·2 answers
  • NEED HELP PLEASE!!!! 15 POINTS!
    7·1 answer
  • Just number 18 please
    8·1 answer
  • A quadrilateral is shown below. What is the slope of line segment R¯¯S¯¯? (Type numerical answer only)
    12·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B%20%5Cfrac%7B5%7D%7B27%7D%20%7D%20" id="TexFormula1" title=" \sqrt{ \frac{5}{27}
    13·1 answer
  • How many 6s are in 12?
    15·2 answers
  • 7<br> 9<br> 3<br> 10<br> Simplify the answer if possible.)
    9·1 answer
  • Given f(x) = x^3 - 5x^2 + kx + 4 and that x-2 is a factor of f(x), what is the value of k?
    5·2 answers
  • .7 times 4 all this is for a question
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!