Answer:
2 times
Step-by-step explanation:
Mai biked
miles today and Noah biked
miles today.
We are asked how many times the length of Noah's bike ride was Mai's bike ride.
Therefore, the length of Mai's bike ride was
times the length of Noah's bike ride.
Therefore, we will take option B will be correct. ( Answer )
<u>Answer-</u>

<u>Solution-</u>
Rational Root Theorem-

All the potential rational roots are,

The given polynomial is,

Here,

The potential rational roots are,


From, the given options only
satisfies.
You need to divide 179.10 by 6
Answers:
_____________________________________________________
Part A) " (3x + 4) " units .
_____________________________________________________
Part B) "The dimensions of the rectangle are:
" (4x + 5y) " units ; <u>AND</u>: " (4x − 5y)" units."
_____________________________________________________
Explanation for Part A):
_____________________________________________________
Since each side length of a square is the same;
Area = Length * width = L * w ; L = w = s = s ;
in which: " s = side length" ;
So, the Area of a square, "A" = L * w = s * s = s² ;
{<u>Note</u>: A "square" is a rectangle with 4 (four) equal sides.}.
→ Each side length, "s", of a square is equal.
Given: s² = "(9x² + 24x + 16)" square units ;
Find "s" by factoring: "(9x² + 24x + 16)" completely:
→ " 9x² + 24x + 16 ";
Factor by "breaking into groups" :
"(9x² + 24x + 16)" =
→ "(9x² + 12x) (12x + 16)" ;
_______________________________________________________
Given: " (9x² + 24x + 16) " ;
_______________________________________________________
Let us start with the term:
_______________________________________________________
" (9x² + 12x) " ;
→ Factor out a "3x" ; → as follows:
_______________________________________
→ " 3x (3x + 4) " ;
Then, take the term:
_______________________________________
→ " (12x + 16) " ;
And factor out a "4" ; → as follows:
_______________________________________
→ " 4 (3x + 4) "
_______________________________________
We have:
" 9x² + 24x + 16 " ;
= " 3x (3x + 4) + 4(3x + 4) " ;
_______________________________________
Now, notice the term: "(3x + 4)" ;
We can "factor out" this term:
3x (3x + 4) + 4(3x + 4) =
→ " (3x + 4) (3x + 4) " . → which is the fully factored form of:
" 9x² + 24x + 16 " ;
____________________________________________________
→ Or; write: " (3x + 4) (3x + 4)" ; as: " (3x + 4)² " .
____________________________________________________
→ So, "s² = 9x² + 24x + 16 " ;
Rewrite as: " s² = (3x + 4)² " .
→ Solve for the "positive value of "s" ;
→ {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
→ Take the "positive square root of EACH SIDE of the equation;
to isolate "s" on one side of the equation; & to solve for "s" ;
→ ⁺√(s²) = ⁺√[(3x + 4)²] '
To get:
→ s = " (3x + 4)" units .
_______________________________________________________
Part A): The answer is: "(3x + 4)" units.
____________________________________________________
Explanation for Part B):
_________________________________________________________<span>
The area, "A" of a rectangle is:
A = L * w ;
in which "A" is the "area" of the rectangle;
"L" is the "length" of the rectangle;
"w" is the "width" of the rectangle;
_______________________________________________________
Given: " A = </span>(16x² − 25y²) square units" ;
→ We are asked to find the dimensions, "L" & "w" ;
→ by factoring the given "area" expression completely:
____________________________________________________
→ Factor: " (16x² − 25y²) square units " completely '
Note that: "16" and: "25" are both "perfect squares" ;
We can rewrite: " (16x² − 25y²) " ; as:
= " (4²x²) − (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:
________________________________________________________
" (16x²) " ; can be written as: "(4x)² " ;
↔ " (4x)² = "(4²)(x²)" = 16x² "
Note: The following property of exponents:
→ (xy)ⁿ = xⁿ yⁿ ; → As such: " 16x² = (4²x²) = (4x)² " .
_______________________________________________________
Note:
_______________________________________________________
→ " (25x²) " ; can be written as: " (5x)² " ;
↔ "( 5x)² = "(5²)(x²)" = 25x² " ;
Note: The following property of exponents:
→ (xy)ⁿ = xⁿ yⁿ ; → As such: " 25x² = (5²x²) = (5x)² " .
______________________________________________________
→ So, we can rewrite: " (16x² − 25y²) " ;
as: " (4x)² − (5y)² " ;
→ {Note: We substitute: "(4x)² " for "(16x²)" ; & "(5y)² " for "(25y²)" .} . ;
_______________________________________________________
→ We have: " (4x)² − (5y)² " ;
→ Note that we are asked to "factor completely" ;
→ Note that: " x² − y² = (x + y) (x − y) " ;
→ {This property is known as the "<u>difference of squares</u>".}.
→ As such: " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B): The answer is: "The dimensions of the rectangle are:
" (4x + 5y) " units ; AND: " (4x − 5y)" units."
_______________________________________________________
Answer:
2
Step-by-step explanation:
the - means you have to subtract to add. so subtract 3 over 4 and you get 2