1)96/8=12
2)(95*6+5)/6 : (24+1)/3 = (95*6+5)/6 : 2*25/6 = 575/6 *6/50=575/50
=23/2=11 1/2
11 1/2
3) (11 1/2)*12 area of the one type of the wall, there are 2 such walls
(11 1/2)*12*2
(8 1/3)*12 area of the second type of the wall, there are 2 such walls
(8 1/3)*12 *2
Altogether area of the walls:
(11 1/2)*12*2 + (8 1/3)*12 *2=12*2(11 1/2 + 8 1/3)= =24(19+3/6+2/6)=24(19+5/6) = 456 +24*(5/6)= 456+20= 476
Tamara needs total 476 square feet, which is less than 480 square feet, so she has enough paint.
Answer:
The integers are -3, x, and -y
Step-by-step explanation:
Answer:
1.) 471.24
2.) 1231.5
3.) 113.1
Step-by-step explanation: A = pi x r^2 + pi x r x ^2
1.) a = 3.14 x (5)^2 + 3.14 x 5 x ^2
a = 3.14 x 25 + 3.14 x 5 x 25
a = 78.54 + 392.70
a ≈ 471.24
2.) A = 3.14 (7)^2 + 3.14 x (7) x ^2
a = 3.14 x 49 + 3.14 x 7 x 49
a = 153.93 + 1077.57
a ≈ 1231.5
3.) a = 3.14 (3)^2 + 3.14 x 3 x ^2
a = 3.14 x 9 + 3.14 x 3 x 9
a = 28.27 + 84.82
a ≈ 113.1
Some basic formulas involving triangles
\ a^2 = b^2 + c^2 - 2bc \textrm{ cos } \alphaa 2 =b 2+2 + c 2
−2bc cos α
\ b^2 = a^2 + c^2 - 2ac \textrm{ cos } \betab 2=
m_b^2 = \frac{1}{4}( 2a^2 + 2c^2 - b^2 )m b2 = 41(2a 2 + 2c 2-b 2)
b
Bisector formulas
\ \frac{a}{b} = \frac{m}{n} ba =nm
\ l^2 = ab - mnl 2=ab-mm
A = \frac{1}{2}a\cdot b = \frac{1}{2}c\cdot hA=
\ A = \sqrt{p(p - a)(p - b)(p - c)}A=
p(p−a)(p−b)(p−c)
\iits whatever A = prA=pr with r we denote the radius of the triangle inscribed circle
\ A = \frac{abc}{4R}A=
4R
abc
- R is the radius of the prescribed circle
\ A = \sqrt{p(p - a)(p - b)(p - c)}A=
p(p−a)(p−b)(p−c)
Answer:
-4x + 12
Step-by-step explanation:
2(x+6)-6x
2x + 12 - 6x
combine llike terms
2x - 6x = -4x
-4x + 12