The faster a string vibrates, the higher frequency sound it produces,
and the higher the pitch is that we hear.
Answer: 
Explanation:
In the image attached with this answer are shown the given options from which only one is correct.
The correct expression is:

Because, if we derive velocity
with respect to time
we will have acceleration
, hence:

Where
is the mass with units of kilograms (
) and
with units of meter per square seconds
, having as a result 
The other expressions are incorrect, let’s prove it:
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
and
is a constant
because
is a constant in this derivation respect to
This result has units of
and
is a constant
Answer:
v₂ = 15.24 m / s
Explanation:
This is an exercise in fluid mechanics
Let's write Bernoulli's equation, where the subscript 1 is for the factory pipe and the subscript 2 is for the tank.
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
They indicate the pressure in the factory P₁ = 140000 Pa, the velocity
v₁ = 5.5 m / s and the initial height is zero y₁ = 0
the tank is at a pressure of P2 = 2000 Pa and a height of y₂ = 6.0 m
P₁ -P₂ + ρ g (y₁ -y₂) + ½ ρ v₁² = ½ ρ v₂²
let's calculate
140,000 - 2000 + ρ 9.8 (0- 6) + ½ ρ 5.5² = ½ ρ v₂²
138000 - ρ 58.8 + ρ 15.125 = ½ ρ v2²
v₂² = 2 (138000 /ρ - 58.8 + 15.125)
v₂ =
In the exercise they do not indicate what type of liquid is being used, suppose it is water with
ρ = 1000 kg / m³
v₂ =
v₂ = 15.24 m / s
"D. Magnetic and electrical forces are similar because they are both related to the interactions between charged particles" best describes how the forces relate.
Answer:
water can be used as displacement to calculate the volume of a solid object.