The final speed of the nickel at the given quantity of heat is determined as 202.1 m/s.
<h3>Final speed of the nickel</h3>
Apply the principle of conservation of energy.
Q = mcΔθ
Q = (18)(0.444)(66 - 20)
Q = 367.63 J
Q = K.E = ¹/₂mv²
2K.E = mv²
v = √(2K.E/m)
where;
v = √(2 x 367.63)/(0.018))
v = 202.1 m/s
Learn more about speed here: brainly.com/question/4931057
#SPJ1
Answer:
<em>I </em><em>don't</em><em> know</em><em> </em><em>what</em><em> </em><em>are </em><em>you </em><em>saying</em><em> </em><em>but </em><em>I </em><em>don't</em><em> </em><em>have </em><em>any</em><em> </em><em>results</em><em> </em>
Explanation:

magnitude of the net force = mass x acceleraton
= 22 x 2.3
=50.6 N
The internal pressure increases as the gas is heated
Answer:
(d) A strong electron-phonon interaction
Explanation:
Superconductivity -
The phenomenon of superconductivity is due to the attractive force between electrons from the exchange of the phonons that cause the bound pair of electrons known as cooper pairs .
A strong electron -phonon intercation is suitable condition for superconductivity and high resistance .