1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
4 years ago
6

A car is driving 25.5 m/s when it hits

Physics
1 answer:
IceJOKER [234]4 years ago
6 0

Answer:

it takes the car 4.362 seconds to cover the distance of 88.4 m.

Explanation:

The distance the car covers is given by the function

x(t) = vt-\dfrac{1}{2}at^2,

where v = 25.5m/s , and a = 2.40m/s, putting  these in we get:

x(t) = 25.5t-\dfrac{1}{2}(2.4)t^2\\\\x(t) = 25.5t-1.2t^2

Now, when the car has moved to 88.4m, x(t) = 88.4 , or

x(t) = 25.5t-1.2t^2 = 88.4

which is a quadratic equation with solutions

t = 4.362s,\\t = 16.887s

We take the first solution t = 4.362s, <em>since at that time the car is still moving right and decelerating</em>. The second solution t =16.887 describes the situation where the car has stopped decelerating and is now moving leftwards because the decelerating is leftwards, <em>which is utterly wrong because we know that cars do not start moving backwards after the brakes have stopped them! </em>

Thus, it takes the car 4.362 seconds to cover the distance of 88.4 m.

You might be interested in
Once out in space, the space shuttle needs to ________________ to keep going in the same direction at the same speed.
MissTica
Accelerate.
Hope it helps<span />
3 0
3 years ago
Read 2 more answers
All moving objects don’t have momentum<br> A. True<br> B. False
mestny [16]

Answer:

No

Explanation:

Some objects gain momentum.

4 0
2 years ago
Read 2 more answers
a baseball player is dashing toward home plate with a speed of 200 feet per hour. When he decides to hit the dirt. he slides for
Serggg [28]

To solve this problem we will use the kinematic formula for the final velocity.


V_f_x = V_0_x + a_xt


The final speed is 0 at the moment the player stops.


The time until it stops is 1.3 s


The initial speed is 200 feet / s  Note (check the speed units in the problem statement, 200ft / s is very much and 200ft / h is very small)

Then, we clear the formula.


a_x = \frac{(Vfx-V0x)}{t}\\ a_x = \frac{(0-200)}{1.3}\\ a_x = -153.5 ft / s ^ 2

Because the player is slowing down, the acceleration goes in the opposite direction to the player's movement, and that is why it is negative.



To answer part b) we use the following formula.


Vf ^ 2 = Vo ^ 2 + 2a * (x_2 - x_1)\\\\ (x_2 - x_1)= \frac{(V_f ^ 2-V_0 ^ 2)}{2a}\\\\ (x_2 - x_1)= \frac{(0-200 ^ 2)}{- 2 * 153.5}\\\\ (x_2 - x_1)= 130.29 feet

8 0
3 years ago
A ball is thrown against a wall and bounces back toward the thrower with the same speed as it had before hitting the wall. Does
lorasvet [3.4K]

Answer:

A) Although the speed is the same, the direction has changed. Therefore, the velocity has changed.

Explanation:

4 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Other questions:
  • College students receive an average of four phone calls
    6·1 answer
  • Two points, point A and point B, are situated above a current-carrying wire. Point B is located at a distance R from the wire, w
    11·1 answer
  • What can electricty from solar power be used for​
    14·1 answer
  • HELP ASAP!!! What was Johann Dobereiner’s contribution to the development of the periodic table?
    11·2 answers
  • A small fan has blades that have a radius of 0.0600 m. When the fan is turned on, the tips of the blades have a tangential accel
    5·1 answer
  • SOMEBODY PLEASE HELP!! 20 PTS!!!
    13·2 answers
  • NEED HELP THIS IS DUE IN 30 MINUTES
    10·1 answer
  • A rock falls off a cliff with an acceleration of -9.8 m/s^2 and hits the ground 5 s later . How high is the diff?​
    5·1 answer
  • Q4: Two fixed charges, 1 c and -3 C are
    5·1 answer
  • How do biological and environmental factors affect behavior?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!